Loading…

Health-Related Outcomes Associated with Patterns of Risk Factors in Primary Care Patients

It is important to find ways to identify prevalent co-occurring health risk factors to help facilitate treatment programming. One method is to use electronic medical record (EMR) data. Funderburk et al. (J Behav Med 31:525–535, 2008 ) used such data and latent class analysis to identify three classe...

Full description

Saved in:
Bibliographic Details
Published in:Journal of clinical psychology in medical settings 2014-03, Vol.21 (1), p.10-18
Main Authors: Funderburk, Jennifer S., Maisto, Stephen A., Labbe, Allison K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c357t-6a7dd9c795cf8d4779586b9d0d2ead6fd69bd89b5b21cb15cd0db70d5e43489a3
container_end_page 18
container_issue 1
container_start_page 10
container_title Journal of clinical psychology in medical settings
container_volume 21
creator Funderburk, Jennifer S.
Maisto, Stephen A.
Labbe, Allison K.
description It is important to find ways to identify prevalent co-occurring health risk factors to help facilitate treatment programming. One method is to use electronic medical record (EMR) data. Funderburk et al. (J Behav Med 31:525–535, 2008 ) used such data and latent class analysis to identify three classes of individuals based on standard health screens administered in Veterans Affairs primary care clinics. The present study extended these results by examining the health-related outcomes for each of these identified classes. Follow-up data were collected from a subgroup of the original sample ( N  = 4,132). Analyses showed that class assignment predicted number of diagnoses associated with the diseases that the health screens target and number of primary care behavioral health, and emergency room encounters. The findings illustrate one way an EMR can be used to identify clusters of individuals presenting with multiple health risk factors and where the healthcare system comes in contact with them.
doi_str_mv 10.1007/s10880-013-9376-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1512328012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2804064473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-6a7dd9c795cf8d4779586b9d0d2ead6fd69bd89b5b21cb15cd0db70d5e43489a3</originalsourceid><addsrcrecordid>eNp1kE1P3DAQhi1UxMe2P6CXylIvXAz-iGP7iFZ8VEICreDAyXJsp4RmE-pxBP339ZJtkZC4zIw8z7wzfhH6yugxo1SdAKNaU0KZIEaomrzsoAMmlSBCKv6p1LTWxEgt9tEhwCOl1GjB99A-r5jUvOIH6P4yuj4_kFXsXY4BX0_Zj-sI-BRg9N3r23OXH_CNyzmmAfDY4lUHv_C583lMgLsB36Ru7dIfvHQpbsAuDhk-o93W9RC_bPMC3Z2f3S4vydX1xY_l6RXx5cpMaqdCMF4Z6VsdKlUKXTcm0MCjC3UbatMEbRrZcOYbJn3pNIoGGStRaePEAh3Nuk9p_D1FyHbdgY9974Y4TmCZZFxwTUtcoO_v0MdxSkO5zhagonVVKVEoNlM-jQAptvZp_p9l1G58t7PvtvhuN77blzLzbas8NesY_k_8M7oAfAagtIafMb2t_lj1LyYPjg0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2804064473</pqid></control><display><type>article</type><title>Health-Related Outcomes Associated with Patterns of Risk Factors in Primary Care Patients</title><source>Springer Nature</source><creator>Funderburk, Jennifer S. ; Maisto, Stephen A. ; Labbe, Allison K.</creator><creatorcontrib>Funderburk, Jennifer S. ; Maisto, Stephen A. ; Labbe, Allison K.</creatorcontrib><description>It is important to find ways to identify prevalent co-occurring health risk factors to help facilitate treatment programming. One method is to use electronic medical record (EMR) data. Funderburk et al. (J Behav Med 31:525–535, 2008 ) used such data and latent class analysis to identify three classes of individuals based on standard health screens administered in Veterans Affairs primary care clinics. The present study extended these results by examining the health-related outcomes for each of these identified classes. Follow-up data were collected from a subgroup of the original sample ( N  = 4,132). Analyses showed that class assignment predicted number of diagnoses associated with the diseases that the health screens target and number of primary care behavioral health, and emergency room encounters. The findings illustrate one way an EMR can be used to identify clusters of individuals presenting with multiple health risk factors and where the healthcare system comes in contact with them.</description><identifier>ISSN: 1068-9583</identifier><identifier>EISSN: 1573-3572</identifier><identifier>DOI: 10.1007/s10880-013-9376-x</identifier><identifier>PMID: 24158242</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Alcohol use ; Alcoholism - epidemiology ; Behavior modification ; Blood Pressure ; Body Mass Index ; Cardiovascular Diseases - epidemiology ; Causality ; Comorbidity ; Depressive Disorder ; Diabetes Mellitus - epidemiology ; Electronic Health Records - statistics &amp; numerical data ; Emergency medical care ; Emergency Service, Hospital - statistics &amp; numerical data ; Family Medicine ; Female ; Follow-Up Studies ; General Practice ; Health Behavior ; Health Psychology ; Health risk assessment ; Health risks ; Health services utilization ; Health Status ; Humans ; Hypertension - epidemiology ; Intervention ; Latent class analysis ; Male ; Medicine ; Medicine &amp; Public Health ; Mental depression ; Mental Disorders - epidemiology ; Middle Aged ; Patients ; Post traumatic stress disorder ; Primary care ; Primary Health Care - methods ; Primary Health Care - statistics &amp; numerical data ; Questionnaires ; Risk Factors ; Smoking - epidemiology ; Smoking cessation ; Stress Disorders, Post-Traumatic - epidemiology ; United States - epidemiology ; United States Department of Veterans Affairs ; Veterans ; Veterans - statistics &amp; numerical data</subject><ispartof>Journal of clinical psychology in medical settings, 2014-03, Vol.21 (1), p.10-18</ispartof><rights>Springer Science+Business Media New York (outside the USA) 2013</rights><rights>Springer Science+Business Media New York (outside the USA) 2013.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c357t-6a7dd9c795cf8d4779586b9d0d2ead6fd69bd89b5b21cb15cd0db70d5e43489a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24158242$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Funderburk, Jennifer S.</creatorcontrib><creatorcontrib>Maisto, Stephen A.</creatorcontrib><creatorcontrib>Labbe, Allison K.</creatorcontrib><title>Health-Related Outcomes Associated with Patterns of Risk Factors in Primary Care Patients</title><title>Journal of clinical psychology in medical settings</title><addtitle>J Clin Psychol Med Settings</addtitle><addtitle>J Clin Psychol Med Settings</addtitle><description>It is important to find ways to identify prevalent co-occurring health risk factors to help facilitate treatment programming. One method is to use electronic medical record (EMR) data. Funderburk et al. (J Behav Med 31:525–535, 2008 ) used such data and latent class analysis to identify three classes of individuals based on standard health screens administered in Veterans Affairs primary care clinics. The present study extended these results by examining the health-related outcomes for each of these identified classes. Follow-up data were collected from a subgroup of the original sample ( N  = 4,132). Analyses showed that class assignment predicted number of diagnoses associated with the diseases that the health screens target and number of primary care behavioral health, and emergency room encounters. The findings illustrate one way an EMR can be used to identify clusters of individuals presenting with multiple health risk factors and where the healthcare system comes in contact with them.</description><subject>Alcohol use</subject><subject>Alcoholism - epidemiology</subject><subject>Behavior modification</subject><subject>Blood Pressure</subject><subject>Body Mass Index</subject><subject>Cardiovascular Diseases - epidemiology</subject><subject>Causality</subject><subject>Comorbidity</subject><subject>Depressive Disorder</subject><subject>Diabetes Mellitus - epidemiology</subject><subject>Electronic Health Records - statistics &amp; numerical data</subject><subject>Emergency medical care</subject><subject>Emergency Service, Hospital - statistics &amp; numerical data</subject><subject>Family Medicine</subject><subject>Female</subject><subject>Follow-Up Studies</subject><subject>General Practice</subject><subject>Health Behavior</subject><subject>Health Psychology</subject><subject>Health risk assessment</subject><subject>Health risks</subject><subject>Health services utilization</subject><subject>Health Status</subject><subject>Humans</subject><subject>Hypertension - epidemiology</subject><subject>Intervention</subject><subject>Latent class analysis</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Mental depression</subject><subject>Mental Disorders - epidemiology</subject><subject>Middle Aged</subject><subject>Patients</subject><subject>Post traumatic stress disorder</subject><subject>Primary care</subject><subject>Primary Health Care - methods</subject><subject>Primary Health Care - statistics &amp; numerical data</subject><subject>Questionnaires</subject><subject>Risk Factors</subject><subject>Smoking - epidemiology</subject><subject>Smoking cessation</subject><subject>Stress Disorders, Post-Traumatic - epidemiology</subject><subject>United States - epidemiology</subject><subject>United States Department of Veterans Affairs</subject><subject>Veterans</subject><subject>Veterans - statistics &amp; numerical data</subject><issn>1068-9583</issn><issn>1573-3572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kE1P3DAQhi1UxMe2P6CXylIvXAz-iGP7iFZ8VEICreDAyXJsp4RmE-pxBP339ZJtkZC4zIw8z7wzfhH6yugxo1SdAKNaU0KZIEaomrzsoAMmlSBCKv6p1LTWxEgt9tEhwCOl1GjB99A-r5jUvOIH6P4yuj4_kFXsXY4BX0_Zj-sI-BRg9N3r23OXH_CNyzmmAfDY4lUHv_C583lMgLsB36Ru7dIfvHQpbsAuDhk-o93W9RC_bPMC3Z2f3S4vydX1xY_l6RXx5cpMaqdCMF4Z6VsdKlUKXTcm0MCjC3UbatMEbRrZcOYbJn3pNIoGGStRaePEAh3Nuk9p_D1FyHbdgY9974Y4TmCZZFxwTUtcoO_v0MdxSkO5zhagonVVKVEoNlM-jQAptvZp_p9l1G58t7PvtvhuN77blzLzbas8NesY_k_8M7oAfAagtIafMb2t_lj1LyYPjg0</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Funderburk, Jennifer S.</creator><creator>Maisto, Stephen A.</creator><creator>Labbe, Allison K.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>7T2</scope><scope>7U1</scope><scope>7U2</scope><scope>C1K</scope></search><sort><creationdate>20140301</creationdate><title>Health-Related Outcomes Associated with Patterns of Risk Factors in Primary Care Patients</title><author>Funderburk, Jennifer S. ; Maisto, Stephen A. ; Labbe, Allison K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-6a7dd9c795cf8d4779586b9d0d2ead6fd69bd89b5b21cb15cd0db70d5e43489a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alcohol use</topic><topic>Alcoholism - epidemiology</topic><topic>Behavior modification</topic><topic>Blood Pressure</topic><topic>Body Mass Index</topic><topic>Cardiovascular Diseases - epidemiology</topic><topic>Causality</topic><topic>Comorbidity</topic><topic>Depressive Disorder</topic><topic>Diabetes Mellitus - epidemiology</topic><topic>Electronic Health Records - statistics &amp; numerical data</topic><topic>Emergency medical care</topic><topic>Emergency Service, Hospital - statistics &amp; numerical data</topic><topic>Family Medicine</topic><topic>Female</topic><topic>Follow-Up Studies</topic><topic>General Practice</topic><topic>Health Behavior</topic><topic>Health Psychology</topic><topic>Health risk assessment</topic><topic>Health risks</topic><topic>Health services utilization</topic><topic>Health Status</topic><topic>Humans</topic><topic>Hypertension - epidemiology</topic><topic>Intervention</topic><topic>Latent class analysis</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Mental depression</topic><topic>Mental Disorders - epidemiology</topic><topic>Middle Aged</topic><topic>Patients</topic><topic>Post traumatic stress disorder</topic><topic>Primary care</topic><topic>Primary Health Care - methods</topic><topic>Primary Health Care - statistics &amp; numerical data</topic><topic>Questionnaires</topic><topic>Risk Factors</topic><topic>Smoking - epidemiology</topic><topic>Smoking cessation</topic><topic>Stress Disorders, Post-Traumatic - epidemiology</topic><topic>United States - epidemiology</topic><topic>United States Department of Veterans Affairs</topic><topic>Veterans</topic><topic>Veterans - statistics &amp; numerical data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Funderburk, Jennifer S.</creatorcontrib><creatorcontrib>Maisto, Stephen A.</creatorcontrib><creatorcontrib>Labbe, Allison K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Journal of clinical psychology in medical settings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Funderburk, Jennifer S.</au><au>Maisto, Stephen A.</au><au>Labbe, Allison K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Health-Related Outcomes Associated with Patterns of Risk Factors in Primary Care Patients</atitle><jtitle>Journal of clinical psychology in medical settings</jtitle><stitle>J Clin Psychol Med Settings</stitle><addtitle>J Clin Psychol Med Settings</addtitle><date>2014-03-01</date><risdate>2014</risdate><volume>21</volume><issue>1</issue><spage>10</spage><epage>18</epage><pages>10-18</pages><issn>1068-9583</issn><eissn>1573-3572</eissn><abstract>It is important to find ways to identify prevalent co-occurring health risk factors to help facilitate treatment programming. One method is to use electronic medical record (EMR) data. Funderburk et al. (J Behav Med 31:525–535, 2008 ) used such data and latent class analysis to identify three classes of individuals based on standard health screens administered in Veterans Affairs primary care clinics. The present study extended these results by examining the health-related outcomes for each of these identified classes. Follow-up data were collected from a subgroup of the original sample ( N  = 4,132). Analyses showed that class assignment predicted number of diagnoses associated with the diseases that the health screens target and number of primary care behavioral health, and emergency room encounters. The findings illustrate one way an EMR can be used to identify clusters of individuals presenting with multiple health risk factors and where the healthcare system comes in contact with them.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>24158242</pmid><doi>10.1007/s10880-013-9376-x</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1068-9583
ispartof Journal of clinical psychology in medical settings, 2014-03, Vol.21 (1), p.10-18
issn 1068-9583
1573-3572
language eng
recordid cdi_proquest_miscellaneous_1512328012
source Springer Nature
subjects Alcohol use
Alcoholism - epidemiology
Behavior modification
Blood Pressure
Body Mass Index
Cardiovascular Diseases - epidemiology
Causality
Comorbidity
Depressive Disorder
Diabetes Mellitus - epidemiology
Electronic Health Records - statistics & numerical data
Emergency medical care
Emergency Service, Hospital - statistics & numerical data
Family Medicine
Female
Follow-Up Studies
General Practice
Health Behavior
Health Psychology
Health risk assessment
Health risks
Health services utilization
Health Status
Humans
Hypertension - epidemiology
Intervention
Latent class analysis
Male
Medicine
Medicine & Public Health
Mental depression
Mental Disorders - epidemiology
Middle Aged
Patients
Post traumatic stress disorder
Primary care
Primary Health Care - methods
Primary Health Care - statistics & numerical data
Questionnaires
Risk Factors
Smoking - epidemiology
Smoking cessation
Stress Disorders, Post-Traumatic - epidemiology
United States - epidemiology
United States Department of Veterans Affairs
Veterans
Veterans - statistics & numerical data
title Health-Related Outcomes Associated with Patterns of Risk Factors in Primary Care Patients
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A34%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Health-Related%20Outcomes%20Associated%20with%20Patterns%20of%20Risk%20Factors%20in%20Primary%20Care%20Patients&rft.jtitle=Journal%20of%20clinical%20psychology%20in%20medical%20settings&rft.au=Funderburk,%20Jennifer%20S.&rft.date=2014-03-01&rft.volume=21&rft.issue=1&rft.spage=10&rft.epage=18&rft.pages=10-18&rft.issn=1068-9583&rft.eissn=1573-3572&rft_id=info:doi/10.1007/s10880-013-9376-x&rft_dat=%3Cproquest_cross%3E2804064473%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c357t-6a7dd9c795cf8d4779586b9d0d2ead6fd69bd89b5b21cb15cd0db70d5e43489a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2804064473&rft_id=info:pmid/24158242&rfr_iscdi=true