Loading…
Fabrication and photocatalytic properties of a visible-light responsive nanohybrid based on self-assembly of carboxyl graphene and ZnAl layered double hydroxides
The synthesis of a layer-by-layer ordered nanohybrid with a sandwich structure was based on electrostatically driven self-assembly between the negatively charged carboxyl graphene monolayer and the positively charged ZnAl-layered double hydroxide nanosheets. The characteristics of the layer-by-layer...
Saved in:
Published in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2014-01, Vol.2 (15), p.5534-5540 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c301t-513949b562a67cadc1e16c66938af9a389d091586b3f5f390613577aac5334f23 |
---|---|
cites | cdi_FETCH-LOGICAL-c301t-513949b562a67cadc1e16c66938af9a389d091586b3f5f390613577aac5334f23 |
container_end_page | 5540 |
container_issue | 15 |
container_start_page | 5534 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 2 |
creator | Huang, Zhujian Wu, Pingxiao Gong, Beini Fang, Yueping Zhu, Nengwu |
description | The synthesis of a layer-by-layer ordered nanohybrid with a sandwich structure was based on electrostatically driven self-assembly between the negatively charged carboxyl graphene monolayer and the positively charged ZnAl-layered double hydroxide nanosheets. The characteristics of the layer-by-layer ordered nanohybrid were investigated by SEM, TEM, AFM and XRD. The enhanced photocatalytic activity of the calcined product was determined by the photocatalytic degradation of the cationic dye methylene blue (MB) and anionic dye orange G (OG) under visible light. The enhanced photocatalytic efficiency was mainly attributed to the effective electronic coupling between graphene and calcined ZnAl-LDH. Additionally, the chemical stability of the calcined ZnAl-LDH is significantly improved by hybridization of graphene and this is attributed to the protection provided by the close contacted graphene with highly stability. This work also establishes a simple method for fabricating graphene-based nanohybrids with a sandwich structure. |
doi_str_mv | 10.1039/c3ta15350a |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1512338152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1512338152</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-513949b562a67cadc1e16c66938af9a389d091586b3f5f390613577aac5334f23</originalsourceid><addsrcrecordid>eNpFkcFKw0AQhoMoWGovPsEeRYjudrvb7LEUq0LBi168hMlm0qxss3EnLc3j-KamVnQuMwP__w3DnyTXgt8JLs29lR0IJRWHs2Q05Yqn85nR539zll0mE6IPPlTGuTZmlHytoIjOQudCw6ApWVuHLgw7-L5zlrUxtBg7h8RCxYDtHbnCY-rdpu5YRGpDQ26PrIEm1P3AKlkBhCUbeIS-SoEIt4Xvj34LsQiH3rNNhLbGBn9OvjcLzzz0GAdbGXYDn9V9GcPBlUhXyUUFnnDy28fJ2-rhdfmUrl8en5eLdWolF12qhDQzUyg9BT23UFqBQlutjcygMiAzU3IjVKYLWalKGq6FVPM5gFVSzqqpHCc3J-7w8ucOqcu3jix6Dw2GHeVCiamUmVBH6e1JamMgiljlbXRbiH0ueH6MIv-PQn4D4VN_dw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1512338152</pqid></control><display><type>article</type><title>Fabrication and photocatalytic properties of a visible-light responsive nanohybrid based on self-assembly of carboxyl graphene and ZnAl layered double hydroxides</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Huang, Zhujian ; Wu, Pingxiao ; Gong, Beini ; Fang, Yueping ; Zhu, Nengwu</creator><creatorcontrib>Huang, Zhujian ; Wu, Pingxiao ; Gong, Beini ; Fang, Yueping ; Zhu, Nengwu</creatorcontrib><description>The synthesis of a layer-by-layer ordered nanohybrid with a sandwich structure was based on electrostatically driven self-assembly between the negatively charged carboxyl graphene monolayer and the positively charged ZnAl-layered double hydroxide nanosheets. The characteristics of the layer-by-layer ordered nanohybrid were investigated by SEM, TEM, AFM and XRD. The enhanced photocatalytic activity of the calcined product was determined by the photocatalytic degradation of the cationic dye methylene blue (MB) and anionic dye orange G (OG) under visible light. The enhanced photocatalytic efficiency was mainly attributed to the effective electronic coupling between graphene and calcined ZnAl-LDH. Additionally, the chemical stability of the calcined ZnAl-LDH is significantly improved by hybridization of graphene and this is attributed to the protection provided by the close contacted graphene with highly stability. This work also establishes a simple method for fabricating graphene-based nanohybrids with a sandwich structure.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c3ta15350a</identifier><language>eng</language><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2014-01, Vol.2 (15), p.5534-5540</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-513949b562a67cadc1e16c66938af9a389d091586b3f5f390613577aac5334f23</citedby><cites>FETCH-LOGICAL-c301t-513949b562a67cadc1e16c66938af9a389d091586b3f5f390613577aac5334f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Huang, Zhujian</creatorcontrib><creatorcontrib>Wu, Pingxiao</creatorcontrib><creatorcontrib>Gong, Beini</creatorcontrib><creatorcontrib>Fang, Yueping</creatorcontrib><creatorcontrib>Zhu, Nengwu</creatorcontrib><title>Fabrication and photocatalytic properties of a visible-light responsive nanohybrid based on self-assembly of carboxyl graphene and ZnAl layered double hydroxides</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>The synthesis of a layer-by-layer ordered nanohybrid with a sandwich structure was based on electrostatically driven self-assembly between the negatively charged carboxyl graphene monolayer and the positively charged ZnAl-layered double hydroxide nanosheets. The characteristics of the layer-by-layer ordered nanohybrid were investigated by SEM, TEM, AFM and XRD. The enhanced photocatalytic activity of the calcined product was determined by the photocatalytic degradation of the cationic dye methylene blue (MB) and anionic dye orange G (OG) under visible light. The enhanced photocatalytic efficiency was mainly attributed to the effective electronic coupling between graphene and calcined ZnAl-LDH. Additionally, the chemical stability of the calcined ZnAl-LDH is significantly improved by hybridization of graphene and this is attributed to the protection provided by the close contacted graphene with highly stability. This work also establishes a simple method for fabricating graphene-based nanohybrids with a sandwich structure.</description><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpFkcFKw0AQhoMoWGovPsEeRYjudrvb7LEUq0LBi168hMlm0qxss3EnLc3j-KamVnQuMwP__w3DnyTXgt8JLs29lR0IJRWHs2Q05Yqn85nR539zll0mE6IPPlTGuTZmlHytoIjOQudCw6ApWVuHLgw7-L5zlrUxtBg7h8RCxYDtHbnCY-rdpu5YRGpDQ26PrIEm1P3AKlkBhCUbeIS-SoEIt4Xvj34LsQiH3rNNhLbGBn9OvjcLzzz0GAdbGXYDn9V9GcPBlUhXyUUFnnDy28fJ2-rhdfmUrl8en5eLdWolF12qhDQzUyg9BT23UFqBQlutjcygMiAzU3IjVKYLWalKGq6FVPM5gFVSzqqpHCc3J-7w8ucOqcu3jix6Dw2GHeVCiamUmVBH6e1JamMgiljlbXRbiH0ueH6MIv-PQn4D4VN_dw</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Huang, Zhujian</creator><creator>Wu, Pingxiao</creator><creator>Gong, Beini</creator><creator>Fang, Yueping</creator><creator>Zhu, Nengwu</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope></search><sort><creationdate>20140101</creationdate><title>Fabrication and photocatalytic properties of a visible-light responsive nanohybrid based on self-assembly of carboxyl graphene and ZnAl layered double hydroxides</title><author>Huang, Zhujian ; Wu, Pingxiao ; Gong, Beini ; Fang, Yueping ; Zhu, Nengwu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-513949b562a67cadc1e16c66938af9a389d091586b3f5f390613577aac5334f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Zhujian</creatorcontrib><creatorcontrib>Wu, Pingxiao</creatorcontrib><creatorcontrib>Gong, Beini</creatorcontrib><creatorcontrib>Fang, Yueping</creatorcontrib><creatorcontrib>Zhu, Nengwu</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Zhujian</au><au>Wu, Pingxiao</au><au>Gong, Beini</au><au>Fang, Yueping</au><au>Zhu, Nengwu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication and photocatalytic properties of a visible-light responsive nanohybrid based on self-assembly of carboxyl graphene and ZnAl layered double hydroxides</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2</volume><issue>15</issue><spage>5534</spage><epage>5540</epage><pages>5534-5540</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>The synthesis of a layer-by-layer ordered nanohybrid with a sandwich structure was based on electrostatically driven self-assembly between the negatively charged carboxyl graphene monolayer and the positively charged ZnAl-layered double hydroxide nanosheets. The characteristics of the layer-by-layer ordered nanohybrid were investigated by SEM, TEM, AFM and XRD. The enhanced photocatalytic activity of the calcined product was determined by the photocatalytic degradation of the cationic dye methylene blue (MB) and anionic dye orange G (OG) under visible light. The enhanced photocatalytic efficiency was mainly attributed to the effective electronic coupling between graphene and calcined ZnAl-LDH. Additionally, the chemical stability of the calcined ZnAl-LDH is significantly improved by hybridization of graphene and this is attributed to the protection provided by the close contacted graphene with highly stability. This work also establishes a simple method for fabricating graphene-based nanohybrids with a sandwich structure.</abstract><doi>10.1039/c3ta15350a</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2014-01, Vol.2 (15), p.5534-5540 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_miscellaneous_1512338152 |
source | Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list) |
title | Fabrication and photocatalytic properties of a visible-light responsive nanohybrid based on self-assembly of carboxyl graphene and ZnAl layered double hydroxides |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T07%3A55%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20and%20photocatalytic%20properties%20of%20a%20visible-light%20responsive%20nanohybrid%20based%20on%20self-assembly%20of%20carboxyl%20graphene%20and%20ZnAl%20layered%20double%20hydroxides&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Huang,%20Zhujian&rft.date=2014-01-01&rft.volume=2&rft.issue=15&rft.spage=5534&rft.epage=5540&rft.pages=5534-5540&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c3ta15350a&rft_dat=%3Cproquest_cross%3E1512338152%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c301t-513949b562a67cadc1e16c66938af9a389d091586b3f5f390613577aac5334f23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1512338152&rft_id=info:pmid/&rfr_iscdi=true |