Loading…

Mechanical control of the endothelial barrier

The integrity of the endothelial barrier is controlled by the combined action of chemical and mechanical signaling systems. Permeability-regulating factors signal through small GTPases to regulate the architecture of the cytoskeleton and this has a strong impact on the morphology and stability of VE...

Full description

Saved in:
Bibliographic Details
Published in:Cell and tissue research 2014-03, Vol.355 (3), p.545-555
Main Authors: Oldenburg, Joppe, de Rooij, Johan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The integrity of the endothelial barrier is controlled by the combined action of chemical and mechanical signaling systems. Permeability-regulating factors signal through small GTPases to regulate the architecture of the cytoskeleton and this has a strong impact on the morphology and stability of VE-cadherin-based cell–cell junctions. The details of how structural and mechanical properties of the actin cytoskeleton influence cell–cell adhesion and how this impacts the dynamic regulation of the endothelial barrier, are beginning to be elucidated. In this review, we discuss the physical and regulatory interactions between the VE-cadherin complex and the actomysoin cytoskeleton, as they are the main determinants of cell–cell adhesion and the mechanical architecture of the cytoskeleton. We discuss, based on recent in vitro data, how a balance between Linear Adherens Junctions, paralleled by cortical actin bundles and Focal Adherens Junctions, connected to radial action bundles, determines endothelial barrier function. We discuss how small GTPases control this balance by regulating the spatial organization and mechanics of actomyosin. We propose a hypothetical model of how biochemical and mechanical signals cooperate locally, at the actomyosin–adhesion interface to open and re-seal the barrier in a rapid and controlled manner.
ISSN:0302-766X
1432-0878
DOI:10.1007/s00441-013-1792-6