Loading…

Crack detection in aluminum parts by using ultrasound-excited infrared thermography

•Ultrasonic IR thermography can detect ‘kissing’ cracks in heavy aluminum structures.•Thick aluminum beams should be supported at two ends and be stimulated in the middle.•Temperature signals and signal-to-noise ratio reach maximums at times under 0.5s.•1D and 2D wavelet transform is a convenient im...

Full description

Saved in:
Bibliographic Details
Published in:Infrared physics & technology 2013-11, Vol.61, p.149-156
Main Authors: Guo, Xingwang, Vavilov, Vladimir
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c345t-9d764f73cb164f3b8ba085478089902129c849038e8ac41423caf18392aad1c33
cites cdi_FETCH-LOGICAL-c345t-9d764f73cb164f3b8ba085478089902129c849038e8ac41423caf18392aad1c33
container_end_page 156
container_issue
container_start_page 149
container_title Infrared physics & technology
container_volume 61
creator Guo, Xingwang
Vavilov, Vladimir
description •Ultrasonic IR thermography can detect ‘kissing’ cracks in heavy aluminum structures.•Thick aluminum beams should be supported at two ends and be stimulated in the middle.•Temperature signals and signal-to-noise ratio reach maximums at times under 0.5s.•1D and 2D wavelet transform is a convenient image enhancing technique. Ultrasound-stimulated IR thermography, thanks to its large-area imaging capability, high test productivity and safety, is a powerful tool for the inspection of cracks in heavy aluminum structures. In thick aluminum parts, the most important defect detection parameters are the differential temperature signal and signal-to-noise ratio (SNR), which typically reach their maximums at shortly (under 1s) after the beginning of the ultrasonic excitation. In the IR inspection of non-metals, the ultrasonic excitation may be relatively long, while in the case of highly-conductive aluminum, short-pulse (burst) stimulation (from 0.4 to 1s) is sufficient The crack detectability can be improved by evaluating temperature images at the times when maximum SNR values occur. Further enhancement of test results can be achieved by applying some data processing algorithms which can be 1D, i.e. applied to temperature evolutions in time, or 2D, i.e. applied to spatial coordinates, or a single image.
doi_str_mv 10.1016/j.infrared.2013.08.003
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1513420201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1350449513001576</els_id><sourcerecordid>1513420201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-9d764f73cb164f3b8ba085478089902129c849038e8ac41423caf18392aad1c33</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqXwF5BHloRz7DT2Bqr4kioxALPl2E7rkjjBdhD996QqnZnuhnvu7n0QuiaQEyCL223ufBNUsCYvgNAceA5AT9CM8EpkUFTl6dTTEjLGRHmOLmLcwgQyWMzQ2zIo_YmNTVYn13vsPFbt2Dk_dnhQIUVc7_AYnV_jsU1BxX70JrM_2iVr8PEyThsbun4d1LDZXaKzRrXRXv3VOfp4fHhfPmer16eX5f0q05SVKROmWrCmorqefmlozWsFvGQVBy4EFKQQmjMBlFuuNCOsoFo1hFNRKGWIpnSObg57h9B_jTYm2bmobdsqb_sxSlISygrYS5mjxWFUhz7GYBs5BNepsJME5N6i3MpjFrkHJHA5WZzAuwNopyDfzgYZtbNeW-PCZEya3v234hcANX8U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513420201</pqid></control><display><type>article</type><title>Crack detection in aluminum parts by using ultrasound-excited infrared thermography</title><source>ScienceDirect Freedom Collection</source><creator>Guo, Xingwang ; Vavilov, Vladimir</creator><creatorcontrib>Guo, Xingwang ; Vavilov, Vladimir</creatorcontrib><description>•Ultrasonic IR thermography can detect ‘kissing’ cracks in heavy aluminum structures.•Thick aluminum beams should be supported at two ends and be stimulated in the middle.•Temperature signals and signal-to-noise ratio reach maximums at times under 0.5s.•1D and 2D wavelet transform is a convenient image enhancing technique. Ultrasound-stimulated IR thermography, thanks to its large-area imaging capability, high test productivity and safety, is a powerful tool for the inspection of cracks in heavy aluminum structures. In thick aluminum parts, the most important defect detection parameters are the differential temperature signal and signal-to-noise ratio (SNR), which typically reach their maximums at shortly (under 1s) after the beginning of the ultrasonic excitation. In the IR inspection of non-metals, the ultrasonic excitation may be relatively long, while in the case of highly-conductive aluminum, short-pulse (burst) stimulation (from 0.4 to 1s) is sufficient The crack detectability can be improved by evaluating temperature images at the times when maximum SNR values occur. Further enhancement of test results can be achieved by applying some data processing algorithms which can be 1D, i.e. applied to temperature evolutions in time, or 2D, i.e. applied to spatial coordinates, or a single image.</description><identifier>ISSN: 1350-4495</identifier><identifier>EISSN: 1879-0275</identifier><identifier>DOI: 10.1016/j.infrared.2013.08.003</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Aluminum ; Crack ; Cracks ; Excitation ; Flaw detection ; Image processing ; Infrared ; Inspection ; Thermography ; Ultrasonic infrared thermography ; Ultrasonic testing ; Vibrothermography ; Wavelet analysis</subject><ispartof>Infrared physics &amp; technology, 2013-11, Vol.61, p.149-156</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-9d764f73cb164f3b8ba085478089902129c849038e8ac41423caf18392aad1c33</citedby><cites>FETCH-LOGICAL-c345t-9d764f73cb164f3b8ba085478089902129c849038e8ac41423caf18392aad1c33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Guo, Xingwang</creatorcontrib><creatorcontrib>Vavilov, Vladimir</creatorcontrib><title>Crack detection in aluminum parts by using ultrasound-excited infrared thermography</title><title>Infrared physics &amp; technology</title><description>•Ultrasonic IR thermography can detect ‘kissing’ cracks in heavy aluminum structures.•Thick aluminum beams should be supported at two ends and be stimulated in the middle.•Temperature signals and signal-to-noise ratio reach maximums at times under 0.5s.•1D and 2D wavelet transform is a convenient image enhancing technique. Ultrasound-stimulated IR thermography, thanks to its large-area imaging capability, high test productivity and safety, is a powerful tool for the inspection of cracks in heavy aluminum structures. In thick aluminum parts, the most important defect detection parameters are the differential temperature signal and signal-to-noise ratio (SNR), which typically reach their maximums at shortly (under 1s) after the beginning of the ultrasonic excitation. In the IR inspection of non-metals, the ultrasonic excitation may be relatively long, while in the case of highly-conductive aluminum, short-pulse (burst) stimulation (from 0.4 to 1s) is sufficient The crack detectability can be improved by evaluating temperature images at the times when maximum SNR values occur. Further enhancement of test results can be achieved by applying some data processing algorithms which can be 1D, i.e. applied to temperature evolutions in time, or 2D, i.e. applied to spatial coordinates, or a single image.</description><subject>Aluminum</subject><subject>Crack</subject><subject>Cracks</subject><subject>Excitation</subject><subject>Flaw detection</subject><subject>Image processing</subject><subject>Infrared</subject><subject>Inspection</subject><subject>Thermography</subject><subject>Ultrasonic infrared thermography</subject><subject>Ultrasonic testing</subject><subject>Vibrothermography</subject><subject>Wavelet analysis</subject><issn>1350-4495</issn><issn>1879-0275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhi0EEqXwF5BHloRz7DT2Bqr4kioxALPl2E7rkjjBdhD996QqnZnuhnvu7n0QuiaQEyCL223ufBNUsCYvgNAceA5AT9CM8EpkUFTl6dTTEjLGRHmOLmLcwgQyWMzQ2zIo_YmNTVYn13vsPFbt2Dk_dnhQIUVc7_AYnV_jsU1BxX70JrM_2iVr8PEyThsbun4d1LDZXaKzRrXRXv3VOfp4fHhfPmer16eX5f0q05SVKROmWrCmorqefmlozWsFvGQVBy4EFKQQmjMBlFuuNCOsoFo1hFNRKGWIpnSObg57h9B_jTYm2bmobdsqb_sxSlISygrYS5mjxWFUhz7GYBs5BNepsJME5N6i3MpjFrkHJHA5WZzAuwNopyDfzgYZtbNeW-PCZEya3v234hcANX8U</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Guo, Xingwang</creator><creator>Vavilov, Vladimir</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20131101</creationdate><title>Crack detection in aluminum parts by using ultrasound-excited infrared thermography</title><author>Guo, Xingwang ; Vavilov, Vladimir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-9d764f73cb164f3b8ba085478089902129c849038e8ac41423caf18392aad1c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aluminum</topic><topic>Crack</topic><topic>Cracks</topic><topic>Excitation</topic><topic>Flaw detection</topic><topic>Image processing</topic><topic>Infrared</topic><topic>Inspection</topic><topic>Thermography</topic><topic>Ultrasonic infrared thermography</topic><topic>Ultrasonic testing</topic><topic>Vibrothermography</topic><topic>Wavelet analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Xingwang</creatorcontrib><creatorcontrib>Vavilov, Vladimir</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Infrared physics &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Xingwang</au><au>Vavilov, Vladimir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crack detection in aluminum parts by using ultrasound-excited infrared thermography</atitle><jtitle>Infrared physics &amp; technology</jtitle><date>2013-11-01</date><risdate>2013</risdate><volume>61</volume><spage>149</spage><epage>156</epage><pages>149-156</pages><issn>1350-4495</issn><eissn>1879-0275</eissn><abstract>•Ultrasonic IR thermography can detect ‘kissing’ cracks in heavy aluminum structures.•Thick aluminum beams should be supported at two ends and be stimulated in the middle.•Temperature signals and signal-to-noise ratio reach maximums at times under 0.5s.•1D and 2D wavelet transform is a convenient image enhancing technique. Ultrasound-stimulated IR thermography, thanks to its large-area imaging capability, high test productivity and safety, is a powerful tool for the inspection of cracks in heavy aluminum structures. In thick aluminum parts, the most important defect detection parameters are the differential temperature signal and signal-to-noise ratio (SNR), which typically reach their maximums at shortly (under 1s) after the beginning of the ultrasonic excitation. In the IR inspection of non-metals, the ultrasonic excitation may be relatively long, while in the case of highly-conductive aluminum, short-pulse (burst) stimulation (from 0.4 to 1s) is sufficient The crack detectability can be improved by evaluating temperature images at the times when maximum SNR values occur. Further enhancement of test results can be achieved by applying some data processing algorithms which can be 1D, i.e. applied to temperature evolutions in time, or 2D, i.e. applied to spatial coordinates, or a single image.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.infrared.2013.08.003</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1350-4495
ispartof Infrared physics & technology, 2013-11, Vol.61, p.149-156
issn 1350-4495
1879-0275
language eng
recordid cdi_proquest_miscellaneous_1513420201
source ScienceDirect Freedom Collection
subjects Aluminum
Crack
Cracks
Excitation
Flaw detection
Image processing
Infrared
Inspection
Thermography
Ultrasonic infrared thermography
Ultrasonic testing
Vibrothermography
Wavelet analysis
title Crack detection in aluminum parts by using ultrasound-excited infrared thermography
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A46%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crack%20detection%20in%20aluminum%20parts%20by%20using%20ultrasound-excited%20infrared%20thermography&rft.jtitle=Infrared%20physics%20&%20technology&rft.au=Guo,%20Xingwang&rft.date=2013-11-01&rft.volume=61&rft.spage=149&rft.epage=156&rft.pages=149-156&rft.issn=1350-4495&rft.eissn=1879-0275&rft_id=info:doi/10.1016/j.infrared.2013.08.003&rft_dat=%3Cproquest_cross%3E1513420201%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c345t-9d764f73cb164f3b8ba085478089902129c849038e8ac41423caf18392aad1c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1513420201&rft_id=info:pmid/&rfr_iscdi=true