Loading…
Reduced complexity list sphere decoding for MIMO systems
Depth-first sphere decoding of MIMO systems has near maximum likelihood performance with reasonable computational complexity. In this paper, lower complexity depth-first sphere decoding and list sphere decoding algorithms are proposed. Several criteria for re-ordering the search dimensions are propo...
Saved in:
Published in: | Digital signal processing 2014-02, Vol.25, p.84-92 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Depth-first sphere decoding of MIMO systems has near maximum likelihood performance with reasonable computational complexity. In this paper, lower complexity depth-first sphere decoding and list sphere decoding algorithms are proposed. Several criteria for re-ordering the search dimensions are proposed. The proposed sphere decoders are shown to have a significantly reduced decoding complexity at low SNRs. To further reduce the complexity at high SNRs, the point search-space at each ordered dimension is adaptively reduced. Further reductions in the decoding complexity are achieved by inter-layer interference cancellation. It is shown that the proposed sphere decoding algorithms maintain their near-optimal performance, concurrently with a significant complexity reduction, over a wide SNR range. |
---|---|
ISSN: | 1051-2004 1095-4333 |
DOI: | 10.1016/j.dsp.2013.10.023 |