Loading…
Chaos based neural network optimization for concentration estimation of indoor air contaminants by an electronic nose
Electronic nose (E-nose), as an artificial olfactory system, can be used for estimation of gases concentration combined with a pattern recognition module. This paper studies the concentration estimations of indoor contaminants for air quality monitoring in dwellings using chaos based optimization ar...
Saved in:
Published in: | Sensors and actuators. A. Physical. 2013, Vol.189, p.161-167 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Electronic nose (E-nose), as an artificial olfactory system, can be used for estimation of gases concentration combined with a pattern recognition module. This paper studies the concentration estimations of indoor contaminants for air quality monitoring in dwellings using chaos based optimization artificial neural network integrated into our self-designed portable E-nose instrument. Back-propagation neural network (BPNN) has been recognized as the common pattern recognition. Considering the local optimal flaw of BPNN, this paper presents a novel chaotic sequence optimization BPNN method for improving the accuracy of E-nose prediction. Further comparison with particle swarm optimization is also employed, and maximum 26.03% and 16.4% prediction error decreased after using chaotic based optimization for formaldehyde and benzene concentration estimation. Experimental results demonstrate the superiority and efficiency of the portable E-nose instrument integrated with artificial neural network optimized by chaotic sequence based optimization algorithms in real-time monitoring of air quality in dwellings. |
---|---|
ISSN: | 0924-4247 1873-3069 |
DOI: | 10.1016/j.sna.2012.10.023 |