Loading…

Performance analysis of a membrane liquid desiccant air-conditioning system

A new membrane liquid desiccant air-conditioning (LDAC) system is proposed and investigated in this paper. Liquid-to-air membrane energy exchangers (LAMEEs) are used as a dehumidifier and a regenerator in the proposed membrane LDAC system, which can eliminate the desiccant droplets carryover problem...

Full description

Saved in:
Bibliographic Details
Published in:Energy and buildings 2013-07, Vol.62, p.559-569
Main Authors: ABDEL-SALAM, Ahmed H, GAOMING GE, SIMONSON, Carey J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A new membrane liquid desiccant air-conditioning (LDAC) system is proposed and investigated in this paper. Liquid-to-air membrane energy exchangers (LAMEEs) are used as a dehumidifier and a regenerator in the proposed membrane LDAC system, which can eliminate the desiccant droplets carryover problem occurring in most direct-contact LDAC systems. A parametric study on steady-state performance of the membrane LDAC system is performed using the TRNSYS energy simulation platform. The impacts of various climatic conditions and key system parameters on the system performance are evaluated. Results show that the proposed membrane LDAC system is capable of achieving recommended supply air conditions for productive, comfort and healthy environments if the key system parameters are effectively controlled. The system coefficient of performance (COP) at the design condition is 0.68, and the sensible heat ratio (SHR) for the dehumidifier lies in the range between 0.3 and 0.5 under different climatic, operating and design conditions. The proposed membrane LDAC system is able to effectively remove latent load in applications that require efficient humidity control.
ISSN:0378-7788
DOI:10.1016/j.enbuild.2013.03.028