Loading…
Improving time series modeling by decomposing and analyzing stochastic and deterministic influences
This paper proposes a new approach to improve time series modeling by considering stochastic and deterministic influences. Assuming such influences are present in observations, a first decomposition step is required to split them into two components: one stochastic and another deterministic. As seco...
Saved in:
Published in: | Signal processing 2013-11, Vol.93 (11), p.3001-3013 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c369t-f214222b6c6a0fcb49d2921282067c1c35cbaf529b9d22b41b33c1b71a2fa9833 |
---|---|
cites | cdi_FETCH-LOGICAL-c369t-f214222b6c6a0fcb49d2921282067c1c35cbaf529b9d22b41b33c1b71a2fa9833 |
container_end_page | 3013 |
container_issue | 11 |
container_start_page | 3001 |
container_title | Signal processing |
container_volume | 93 |
creator | Rios, Ricardo Araújo de Mello, Rodrigo Fernandes |
description | This paper proposes a new approach to improve time series modeling by considering stochastic and deterministic influences. Assuming such influences are present in observations, a first decomposition step is required to split them into two components: one stochastic and another deterministic. As second step, models are adjusted on each component and combined to form a hybrid model improving time series analysis. The proposed approach considers the Empirical Mode Decomposition method and a Recurrence Plot-based measurement to decompose and assess stochastic and deterministic influences. Experiments confirmed improvements in time series modeling.
•We present an approach to decompose time series into components.•The obtained components allow understanding stochastic and deterministic influences.•By knowing such influences we can estimate models with high accuracy.•A new measure evaluates the behavior of the predicted and expected observations.•Experiments confirmed improvements by modeling stochastic/deterministic influences. |
doi_str_mv | 10.1016/j.sigpro.2013.04.017 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1513461172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165168413001606</els_id><sourcerecordid>1513461172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-f214222b6c6a0fcb49d2921282067c1c35cbaf529b9d22b41b33c1b71a2fa9833</originalsourceid><addsrcrecordid>eNp9kE1LxEAMhgdRcF39Bx72InhpnUzbme1FEPELBC96HqZpus7Sj3XSFdZf79QVjx5CSPK8CXmFOAeZggR9tU7ZrzZhSJWELJV5KsEciBksjUpMUZhDMYtYkYBe5sfihHktZSS1nAl86qLw0_erxeg7WjAFT7zohpraqVntFjXh0G0GnkrX1zFcu_uaKh4HfHc8evwZ1DRS6Hzvfzq-b9ot9Uh8Ko4a1zKd_ea5eLu_e719TJ5fHp5ub54TzHQ5Jo2CXClVadRONljlZa1KBWqppDYImBVYuaZQZRUHqsqhyjKEyoBTjSuXWTYXl_u98aOPLfFoO89Ibet6GrZsoYAs1wBGRTTfoxgG5kCN3QTfubCzIO3kqV3bvad28tTK3EZPo-zi94JjdG0TXI-e_7TKFKbUuojc9Z6j-O6np2AZ_eRF7QPhaOvB_3_oG21gkI0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513461172</pqid></control><display><type>article</type><title>Improving time series modeling by decomposing and analyzing stochastic and deterministic influences</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Rios, Ricardo Araújo ; de Mello, Rodrigo Fernandes</creator><creatorcontrib>Rios, Ricardo Araújo ; de Mello, Rodrigo Fernandes</creatorcontrib><description>This paper proposes a new approach to improve time series modeling by considering stochastic and deterministic influences. Assuming such influences are present in observations, a first decomposition step is required to split them into two components: one stochastic and another deterministic. As second step, models are adjusted on each component and combined to form a hybrid model improving time series analysis. The proposed approach considers the Empirical Mode Decomposition method and a Recurrence Plot-based measurement to decompose and assess stochastic and deterministic influences. Experiments confirmed improvements in time series modeling.
•We present an approach to decompose time series into components.•The obtained components allow understanding stochastic and deterministic influences.•By knowing such influences we can estimate models with high accuracy.•A new measure evaluates the behavior of the predicted and expected observations.•Experiments confirmed improvements by modeling stochastic/deterministic influences.</description><identifier>ISSN: 0165-1684</identifier><identifier>EISSN: 1872-7557</identifier><identifier>DOI: 10.1016/j.sigpro.2013.04.017</identifier><identifier>CODEN: SPRODR</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adjustment ; Applied sciences ; Decomposition ; Detection, estimation, filtering, equalization, prediction ; Deterministic component ; Empirical analysis ; Empirical mode decomposition ; Exact sciences and technology ; Information, signal and communications theory ; Recurrence plot ; Signal and communications theory ; Signal processing ; Signal, noise ; Stochastic component ; Stochasticity ; Telecommunications and information theory ; Time series ; Time series analysis ; Time series decomposition</subject><ispartof>Signal processing, 2013-11, Vol.93 (11), p.3001-3013</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-f214222b6c6a0fcb49d2921282067c1c35cbaf529b9d22b41b33c1b71a2fa9833</citedby><cites>FETCH-LOGICAL-c369t-f214222b6c6a0fcb49d2921282067c1c35cbaf529b9d22b41b33c1b71a2fa9833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27579665$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rios, Ricardo Araújo</creatorcontrib><creatorcontrib>de Mello, Rodrigo Fernandes</creatorcontrib><title>Improving time series modeling by decomposing and analyzing stochastic and deterministic influences</title><title>Signal processing</title><description>This paper proposes a new approach to improve time series modeling by considering stochastic and deterministic influences. Assuming such influences are present in observations, a first decomposition step is required to split them into two components: one stochastic and another deterministic. As second step, models are adjusted on each component and combined to form a hybrid model improving time series analysis. The proposed approach considers the Empirical Mode Decomposition method and a Recurrence Plot-based measurement to decompose and assess stochastic and deterministic influences. Experiments confirmed improvements in time series modeling.
•We present an approach to decompose time series into components.•The obtained components allow understanding stochastic and deterministic influences.•By knowing such influences we can estimate models with high accuracy.•A new measure evaluates the behavior of the predicted and expected observations.•Experiments confirmed improvements by modeling stochastic/deterministic influences.</description><subject>Adjustment</subject><subject>Applied sciences</subject><subject>Decomposition</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Deterministic component</subject><subject>Empirical analysis</subject><subject>Empirical mode decomposition</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Recurrence plot</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Stochastic component</subject><subject>Stochasticity</subject><subject>Telecommunications and information theory</subject><subject>Time series</subject><subject>Time series analysis</subject><subject>Time series decomposition</subject><issn>0165-1684</issn><issn>1872-7557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxEAMhgdRcF39Bx72InhpnUzbme1FEPELBC96HqZpus7Sj3XSFdZf79QVjx5CSPK8CXmFOAeZggR9tU7ZrzZhSJWELJV5KsEciBksjUpMUZhDMYtYkYBe5sfihHktZSS1nAl86qLw0_erxeg7WjAFT7zohpraqVntFjXh0G0GnkrX1zFcu_uaKh4HfHc8evwZ1DRS6Hzvfzq-b9ot9Uh8Ko4a1zKd_ea5eLu_e719TJ5fHp5ub54TzHQ5Jo2CXClVadRONljlZa1KBWqppDYImBVYuaZQZRUHqsqhyjKEyoBTjSuXWTYXl_u98aOPLfFoO89Ibet6GrZsoYAs1wBGRTTfoxgG5kCN3QTfubCzIO3kqV3bvad28tTK3EZPo-zi94JjdG0TXI-e_7TKFKbUuojc9Z6j-O6np2AZ_eRF7QPhaOvB_3_oG21gkI0</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Rios, Ricardo Araújo</creator><creator>de Mello, Rodrigo Fernandes</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20131101</creationdate><title>Improving time series modeling by decomposing and analyzing stochastic and deterministic influences</title><author>Rios, Ricardo Araújo ; de Mello, Rodrigo Fernandes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-f214222b6c6a0fcb49d2921282067c1c35cbaf529b9d22b41b33c1b71a2fa9833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adjustment</topic><topic>Applied sciences</topic><topic>Decomposition</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Deterministic component</topic><topic>Empirical analysis</topic><topic>Empirical mode decomposition</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Recurrence plot</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Stochastic component</topic><topic>Stochasticity</topic><topic>Telecommunications and information theory</topic><topic>Time series</topic><topic>Time series analysis</topic><topic>Time series decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rios, Ricardo Araújo</creatorcontrib><creatorcontrib>de Mello, Rodrigo Fernandes</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rios, Ricardo Araújo</au><au>de Mello, Rodrigo Fernandes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving time series modeling by decomposing and analyzing stochastic and deterministic influences</atitle><jtitle>Signal processing</jtitle><date>2013-11-01</date><risdate>2013</risdate><volume>93</volume><issue>11</issue><spage>3001</spage><epage>3013</epage><pages>3001-3013</pages><issn>0165-1684</issn><eissn>1872-7557</eissn><coden>SPRODR</coden><abstract>This paper proposes a new approach to improve time series modeling by considering stochastic and deterministic influences. Assuming such influences are present in observations, a first decomposition step is required to split them into two components: one stochastic and another deterministic. As second step, models are adjusted on each component and combined to form a hybrid model improving time series analysis. The proposed approach considers the Empirical Mode Decomposition method and a Recurrence Plot-based measurement to decompose and assess stochastic and deterministic influences. Experiments confirmed improvements in time series modeling.
•We present an approach to decompose time series into components.•The obtained components allow understanding stochastic and deterministic influences.•By knowing such influences we can estimate models with high accuracy.•A new measure evaluates the behavior of the predicted and expected observations.•Experiments confirmed improvements by modeling stochastic/deterministic influences.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.sigpro.2013.04.017</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-1684 |
ispartof | Signal processing, 2013-11, Vol.93 (11), p.3001-3013 |
issn | 0165-1684 1872-7557 |
language | eng |
recordid | cdi_proquest_miscellaneous_1513461172 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Adjustment Applied sciences Decomposition Detection, estimation, filtering, equalization, prediction Deterministic component Empirical analysis Empirical mode decomposition Exact sciences and technology Information, signal and communications theory Recurrence plot Signal and communications theory Signal processing Signal, noise Stochastic component Stochasticity Telecommunications and information theory Time series Time series analysis Time series decomposition |
title | Improving time series modeling by decomposing and analyzing stochastic and deterministic influences |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A13%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20time%20series%20modeling%20by%20decomposing%20and%20analyzing%20stochastic%20and%20deterministic%20influences&rft.jtitle=Signal%20processing&rft.au=Rios,%20Ricardo%20Ara%C3%BAjo&rft.date=2013-11-01&rft.volume=93&rft.issue=11&rft.spage=3001&rft.epage=3013&rft.pages=3001-3013&rft.issn=0165-1684&rft.eissn=1872-7557&rft.coden=SPRODR&rft_id=info:doi/10.1016/j.sigpro.2013.04.017&rft_dat=%3Cproquest_cross%3E1513461172%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c369t-f214222b6c6a0fcb49d2921282067c1c35cbaf529b9d22b41b33c1b71a2fa9833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1513461172&rft_id=info:pmid/&rfr_iscdi=true |