Loading…

Improving time series modeling by decomposing and analyzing stochastic and deterministic influences

This paper proposes a new approach to improve time series modeling by considering stochastic and deterministic influences. Assuming such influences are present in observations, a first decomposition step is required to split them into two components: one stochastic and another deterministic. As seco...

Full description

Saved in:
Bibliographic Details
Published in:Signal processing 2013-11, Vol.93 (11), p.3001-3013
Main Authors: Rios, Ricardo Araújo, de Mello, Rodrigo Fernandes
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c369t-f214222b6c6a0fcb49d2921282067c1c35cbaf529b9d22b41b33c1b71a2fa9833
cites cdi_FETCH-LOGICAL-c369t-f214222b6c6a0fcb49d2921282067c1c35cbaf529b9d22b41b33c1b71a2fa9833
container_end_page 3013
container_issue 11
container_start_page 3001
container_title Signal processing
container_volume 93
creator Rios, Ricardo Araújo
de Mello, Rodrigo Fernandes
description This paper proposes a new approach to improve time series modeling by considering stochastic and deterministic influences. Assuming such influences are present in observations, a first decomposition step is required to split them into two components: one stochastic and another deterministic. As second step, models are adjusted on each component and combined to form a hybrid model improving time series analysis. The proposed approach considers the Empirical Mode Decomposition method and a Recurrence Plot-based measurement to decompose and assess stochastic and deterministic influences. Experiments confirmed improvements in time series modeling. •We present an approach to decompose time series into components.•The obtained components allow understanding stochastic and deterministic influences.•By knowing such influences we can estimate models with high accuracy.•A new measure evaluates the behavior of the predicted and expected observations.•Experiments confirmed improvements by modeling stochastic/deterministic influences.
doi_str_mv 10.1016/j.sigpro.2013.04.017
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1513461172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0165168413001606</els_id><sourcerecordid>1513461172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-f214222b6c6a0fcb49d2921282067c1c35cbaf529b9d22b41b33c1b71a2fa9833</originalsourceid><addsrcrecordid>eNp9kE1LxEAMhgdRcF39Bx72InhpnUzbme1FEPELBC96HqZpus7Sj3XSFdZf79QVjx5CSPK8CXmFOAeZggR9tU7ZrzZhSJWELJV5KsEciBksjUpMUZhDMYtYkYBe5sfihHktZSS1nAl86qLw0_erxeg7WjAFT7zohpraqVntFjXh0G0GnkrX1zFcu_uaKh4HfHc8evwZ1DRS6Hzvfzq-b9ot9Uh8Ko4a1zKd_ea5eLu_e719TJ5fHp5ub54TzHQ5Jo2CXClVadRONljlZa1KBWqppDYImBVYuaZQZRUHqsqhyjKEyoBTjSuXWTYXl_u98aOPLfFoO89Ibet6GrZsoYAs1wBGRTTfoxgG5kCN3QTfubCzIO3kqV3bvad28tTK3EZPo-zi94JjdG0TXI-e_7TKFKbUuojc9Z6j-O6np2AZ_eRF7QPhaOvB_3_oG21gkI0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513461172</pqid></control><display><type>article</type><title>Improving time series modeling by decomposing and analyzing stochastic and deterministic influences</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Rios, Ricardo Araújo ; de Mello, Rodrigo Fernandes</creator><creatorcontrib>Rios, Ricardo Araújo ; de Mello, Rodrigo Fernandes</creatorcontrib><description>This paper proposes a new approach to improve time series modeling by considering stochastic and deterministic influences. Assuming such influences are present in observations, a first decomposition step is required to split them into two components: one stochastic and another deterministic. As second step, models are adjusted on each component and combined to form a hybrid model improving time series analysis. The proposed approach considers the Empirical Mode Decomposition method and a Recurrence Plot-based measurement to decompose and assess stochastic and deterministic influences. Experiments confirmed improvements in time series modeling. •We present an approach to decompose time series into components.•The obtained components allow understanding stochastic and deterministic influences.•By knowing such influences we can estimate models with high accuracy.•A new measure evaluates the behavior of the predicted and expected observations.•Experiments confirmed improvements by modeling stochastic/deterministic influences.</description><identifier>ISSN: 0165-1684</identifier><identifier>EISSN: 1872-7557</identifier><identifier>DOI: 10.1016/j.sigpro.2013.04.017</identifier><identifier>CODEN: SPRODR</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adjustment ; Applied sciences ; Decomposition ; Detection, estimation, filtering, equalization, prediction ; Deterministic component ; Empirical analysis ; Empirical mode decomposition ; Exact sciences and technology ; Information, signal and communications theory ; Recurrence plot ; Signal and communications theory ; Signal processing ; Signal, noise ; Stochastic component ; Stochasticity ; Telecommunications and information theory ; Time series ; Time series analysis ; Time series decomposition</subject><ispartof>Signal processing, 2013-11, Vol.93 (11), p.3001-3013</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-f214222b6c6a0fcb49d2921282067c1c35cbaf529b9d22b41b33c1b71a2fa9833</citedby><cites>FETCH-LOGICAL-c369t-f214222b6c6a0fcb49d2921282067c1c35cbaf529b9d22b41b33c1b71a2fa9833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27579665$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rios, Ricardo Araújo</creatorcontrib><creatorcontrib>de Mello, Rodrigo Fernandes</creatorcontrib><title>Improving time series modeling by decomposing and analyzing stochastic and deterministic influences</title><title>Signal processing</title><description>This paper proposes a new approach to improve time series modeling by considering stochastic and deterministic influences. Assuming such influences are present in observations, a first decomposition step is required to split them into two components: one stochastic and another deterministic. As second step, models are adjusted on each component and combined to form a hybrid model improving time series analysis. The proposed approach considers the Empirical Mode Decomposition method and a Recurrence Plot-based measurement to decompose and assess stochastic and deterministic influences. Experiments confirmed improvements in time series modeling. •We present an approach to decompose time series into components.•The obtained components allow understanding stochastic and deterministic influences.•By knowing such influences we can estimate models with high accuracy.•A new measure evaluates the behavior of the predicted and expected observations.•Experiments confirmed improvements by modeling stochastic/deterministic influences.</description><subject>Adjustment</subject><subject>Applied sciences</subject><subject>Decomposition</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Deterministic component</subject><subject>Empirical analysis</subject><subject>Empirical mode decomposition</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Recurrence plot</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>Stochastic component</subject><subject>Stochasticity</subject><subject>Telecommunications and information theory</subject><subject>Time series</subject><subject>Time series analysis</subject><subject>Time series decomposition</subject><issn>0165-1684</issn><issn>1872-7557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxEAMhgdRcF39Bx72InhpnUzbme1FEPELBC96HqZpus7Sj3XSFdZf79QVjx5CSPK8CXmFOAeZggR9tU7ZrzZhSJWELJV5KsEciBksjUpMUZhDMYtYkYBe5sfihHktZSS1nAl86qLw0_erxeg7WjAFT7zohpraqVntFjXh0G0GnkrX1zFcu_uaKh4HfHc8evwZ1DRS6Hzvfzq-b9ot9Uh8Ko4a1zKd_ea5eLu_e719TJ5fHp5ub54TzHQ5Jo2CXClVadRONljlZa1KBWqppDYImBVYuaZQZRUHqsqhyjKEyoBTjSuXWTYXl_u98aOPLfFoO89Ibet6GrZsoYAs1wBGRTTfoxgG5kCN3QTfubCzIO3kqV3bvad28tTK3EZPo-zi94JjdG0TXI-e_7TKFKbUuojc9Z6j-O6np2AZ_eRF7QPhaOvB_3_oG21gkI0</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Rios, Ricardo Araújo</creator><creator>de Mello, Rodrigo Fernandes</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20131101</creationdate><title>Improving time series modeling by decomposing and analyzing stochastic and deterministic influences</title><author>Rios, Ricardo Araújo ; de Mello, Rodrigo Fernandes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-f214222b6c6a0fcb49d2921282067c1c35cbaf529b9d22b41b33c1b71a2fa9833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adjustment</topic><topic>Applied sciences</topic><topic>Decomposition</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Deterministic component</topic><topic>Empirical analysis</topic><topic>Empirical mode decomposition</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Recurrence plot</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>Stochastic component</topic><topic>Stochasticity</topic><topic>Telecommunications and information theory</topic><topic>Time series</topic><topic>Time series analysis</topic><topic>Time series decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rios, Ricardo Araújo</creatorcontrib><creatorcontrib>de Mello, Rodrigo Fernandes</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rios, Ricardo Araújo</au><au>de Mello, Rodrigo Fernandes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving time series modeling by decomposing and analyzing stochastic and deterministic influences</atitle><jtitle>Signal processing</jtitle><date>2013-11-01</date><risdate>2013</risdate><volume>93</volume><issue>11</issue><spage>3001</spage><epage>3013</epage><pages>3001-3013</pages><issn>0165-1684</issn><eissn>1872-7557</eissn><coden>SPRODR</coden><abstract>This paper proposes a new approach to improve time series modeling by considering stochastic and deterministic influences. Assuming such influences are present in observations, a first decomposition step is required to split them into two components: one stochastic and another deterministic. As second step, models are adjusted on each component and combined to form a hybrid model improving time series analysis. The proposed approach considers the Empirical Mode Decomposition method and a Recurrence Plot-based measurement to decompose and assess stochastic and deterministic influences. Experiments confirmed improvements in time series modeling. •We present an approach to decompose time series into components.•The obtained components allow understanding stochastic and deterministic influences.•By knowing such influences we can estimate models with high accuracy.•A new measure evaluates the behavior of the predicted and expected observations.•Experiments confirmed improvements by modeling stochastic/deterministic influences.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.sigpro.2013.04.017</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0165-1684
ispartof Signal processing, 2013-11, Vol.93 (11), p.3001-3013
issn 0165-1684
1872-7557
language eng
recordid cdi_proquest_miscellaneous_1513461172
source ScienceDirect Freedom Collection 2022-2024
subjects Adjustment
Applied sciences
Decomposition
Detection, estimation, filtering, equalization, prediction
Deterministic component
Empirical analysis
Empirical mode decomposition
Exact sciences and technology
Information, signal and communications theory
Recurrence plot
Signal and communications theory
Signal processing
Signal, noise
Stochastic component
Stochasticity
Telecommunications and information theory
Time series
Time series analysis
Time series decomposition
title Improving time series modeling by decomposing and analyzing stochastic and deterministic influences
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A13%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20time%20series%20modeling%20by%20decomposing%20and%20analyzing%20stochastic%20and%20deterministic%20influences&rft.jtitle=Signal%20processing&rft.au=Rios,%20Ricardo%20Ara%C3%BAjo&rft.date=2013-11-01&rft.volume=93&rft.issue=11&rft.spage=3001&rft.epage=3013&rft.pages=3001-3013&rft.issn=0165-1684&rft.eissn=1872-7557&rft.coden=SPRODR&rft_id=info:doi/10.1016/j.sigpro.2013.04.017&rft_dat=%3Cproquest_cross%3E1513461172%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c369t-f214222b6c6a0fcb49d2921282067c1c35cbaf529b9d22b41b33c1b71a2fa9833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1513461172&rft_id=info:pmid/&rfr_iscdi=true