Loading…
Nanocomposite C/Li2MnSiO4 cathode material for lithium ion batteries
C/Li2MnSiO4 nanocomposite material was obtained by sol–gel method followed by carbon coating process. Electrochemical properties of nanosized C/Li2MnSiO4 cathode composite were studied in terms of changes in the long range ordering of the crystalline structure. Structural morphology was determined u...
Saved in:
Published in: | Journal of power sources 2013-12, Vol.244, p.510-514 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c412t-e16c5c9710a8342468ae96d5e232d24c122250196caa19df4c812935322c17803 |
---|---|
cites | cdi_FETCH-LOGICAL-c412t-e16c5c9710a8342468ae96d5e232d24c122250196caa19df4c812935322c17803 |
container_end_page | 514 |
container_issue | |
container_start_page | 510 |
container_title | Journal of power sources |
container_volume | 244 |
creator | Świętosławski, M. Molenda, M. Furczoń, K. Dziembaj, R. |
description | C/Li2MnSiO4 nanocomposite material was obtained by sol–gel method followed by carbon coating process. Electrochemical properties of nanosized C/Li2MnSiO4 cathode composite were studied in terms of changes in the long range ordering of the crystalline structure. Structural morphology was determined using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Ex-situ XRD studies confirmed amorphization of material during electrochemical process. Even though, C/Li2MnSiO4 composite revealed high discharge capacity (up to 185 mAh g−1) within 1.5–4.8 V, what corresponds to the exchange of more than one lithium-ion per formula unit (1.11 mole Li+). Electrochemical impedance spectroscopy (EIS) studies showed substantial changes in electrical properties of Li2MnSiO4 during amorphization process. The obtained results suggest that electrochemically formed amorphous Li2MnSiO4 has much higher electrical conductivity and Li+ ions diffusibility than as-obtained in sol–gel process crystalline one.
•C/Li2MnSiO4 nanocomposite was obtained by sol–gel method and carbon coating process.•Fine and uniform carbon nanocoatings on nanometric Li2MnSiO4 material were obtained.•Amorphous Li2MnSiO4 was formed during electrochemical process.•DLi+ was calculated for charged and discharged C/Li2MnSiO4 material.•C/Li2MnSiO4 nanocomposite revealed high discharge capacity 185 mA h g−1 at 1.5–4.8 V. |
doi_str_mv | 10.1016/j.jpowsour.2013.02.078 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1513480346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775313003753</els_id><sourcerecordid>1513480346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-e16c5c9710a8342468ae96d5e232d24c122250196caa19df4c812935322c17803</originalsourceid><addsrcrecordid>eNqFkE1P3DAQhi1UJLbQv4ByqdRLsp6xHSe3oi1f0sIeoGfLOBPhKIkXOwvi35PV0l45zWGed17Nw9g58AI4lMuu6LbhLYVdLJCDKDgWXFdHbAGVFjlqpb6xBRe6yrVW4oR9T6njnANovmB_7u0YXBi2IfmJstVy7fFufPAbmTk7PYeGssFOFL3tszbErPfTs98NmQ9j9mSn_YbSGTtubZ_ox-c8ZX-vLh9XN_l6c327uljnTgJOOUHplKs1cFsJibKsLNVlowgFNigdIKLiUJfOWqibVroKsBZKIDrQFRen7Nfh7jaGlx2lyQw-Oep7O1LYJQMKhJw5Wc5oeUBdDClFas02-sHGdwPc7LWZzvzTZvbaDEcza5uDPz87bHK2b6MdnU__06i1VLrCmft94Gh--NVTNMl5Gh01PpKbTBP8V1Ufyx6FNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513480346</pqid></control><display><type>article</type><title>Nanocomposite C/Li2MnSiO4 cathode material for lithium ion batteries</title><source>ScienceDirect Journals</source><creator>Świętosławski, M. ; Molenda, M. ; Furczoń, K. ; Dziembaj, R.</creator><creatorcontrib>Świętosławski, M. ; Molenda, M. ; Furczoń, K. ; Dziembaj, R.</creatorcontrib><description>C/Li2MnSiO4 nanocomposite material was obtained by sol–gel method followed by carbon coating process. Electrochemical properties of nanosized C/Li2MnSiO4 cathode composite were studied in terms of changes in the long range ordering of the crystalline structure. Structural morphology was determined using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Ex-situ XRD studies confirmed amorphization of material during electrochemical process. Even though, C/Li2MnSiO4 composite revealed high discharge capacity (up to 185 mAh g−1) within 1.5–4.8 V, what corresponds to the exchange of more than one lithium-ion per formula unit (1.11 mole Li+). Electrochemical impedance spectroscopy (EIS) studies showed substantial changes in electrical properties of Li2MnSiO4 during amorphization process. The obtained results suggest that electrochemically formed amorphous Li2MnSiO4 has much higher electrical conductivity and Li+ ions diffusibility than as-obtained in sol–gel process crystalline one.
•C/Li2MnSiO4 nanocomposite was obtained by sol–gel method and carbon coating process.•Fine and uniform carbon nanocoatings on nanometric Li2MnSiO4 material were obtained.•Amorphous Li2MnSiO4 was formed during electrochemical process.•DLi+ was calculated for charged and discharged C/Li2MnSiO4 material.•C/Li2MnSiO4 nanocomposite revealed high discharge capacity 185 mA h g−1 at 1.5–4.8 V.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2013.02.078</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Amorphization ; Applied sciences ; Carbon ; Carbon coating ; Cathodes ; Crystal structure ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrochemical impedance spectroscopy ; Exact sciences and technology ; Li-ion batteries ; Li2MnSiO4 ; Lithium-ion batteries ; Materials ; Nanocomposite ; Nanostructure ; Order disorder ; Sol gel process</subject><ispartof>Journal of power sources, 2013-12, Vol.244, p.510-514</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-e16c5c9710a8342468ae96d5e232d24c122250196caa19df4c812935322c17803</citedby><cites>FETCH-LOGICAL-c412t-e16c5c9710a8342468ae96d5e232d24c122250196caa19df4c812935322c17803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,778,782,787,788,23917,23918,25127,27911,27912</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27745782$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Świętosławski, M.</creatorcontrib><creatorcontrib>Molenda, M.</creatorcontrib><creatorcontrib>Furczoń, K.</creatorcontrib><creatorcontrib>Dziembaj, R.</creatorcontrib><title>Nanocomposite C/Li2MnSiO4 cathode material for lithium ion batteries</title><title>Journal of power sources</title><description>C/Li2MnSiO4 nanocomposite material was obtained by sol–gel method followed by carbon coating process. Electrochemical properties of nanosized C/Li2MnSiO4 cathode composite were studied in terms of changes in the long range ordering of the crystalline structure. Structural morphology was determined using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Ex-situ XRD studies confirmed amorphization of material during electrochemical process. Even though, C/Li2MnSiO4 composite revealed high discharge capacity (up to 185 mAh g−1) within 1.5–4.8 V, what corresponds to the exchange of more than one lithium-ion per formula unit (1.11 mole Li+). Electrochemical impedance spectroscopy (EIS) studies showed substantial changes in electrical properties of Li2MnSiO4 during amorphization process. The obtained results suggest that electrochemically formed amorphous Li2MnSiO4 has much higher electrical conductivity and Li+ ions diffusibility than as-obtained in sol–gel process crystalline one.
•C/Li2MnSiO4 nanocomposite was obtained by sol–gel method and carbon coating process.•Fine and uniform carbon nanocoatings on nanometric Li2MnSiO4 material were obtained.•Amorphous Li2MnSiO4 was formed during electrochemical process.•DLi+ was calculated for charged and discharged C/Li2MnSiO4 material.•C/Li2MnSiO4 nanocomposite revealed high discharge capacity 185 mA h g−1 at 1.5–4.8 V.</description><subject>Amorphization</subject><subject>Applied sciences</subject><subject>Carbon</subject><subject>Carbon coating</subject><subject>Cathodes</subject><subject>Crystal structure</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Exact sciences and technology</subject><subject>Li-ion batteries</subject><subject>Li2MnSiO4</subject><subject>Lithium-ion batteries</subject><subject>Materials</subject><subject>Nanocomposite</subject><subject>Nanostructure</subject><subject>Order disorder</subject><subject>Sol gel process</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE1P3DAQhi1UJLbQv4ByqdRLsp6xHSe3oi1f0sIeoGfLOBPhKIkXOwvi35PV0l45zWGed17Nw9g58AI4lMuu6LbhLYVdLJCDKDgWXFdHbAGVFjlqpb6xBRe6yrVW4oR9T6njnANovmB_7u0YXBi2IfmJstVy7fFufPAbmTk7PYeGssFOFL3tszbErPfTs98NmQ9j9mSn_YbSGTtubZ_ox-c8ZX-vLh9XN_l6c327uljnTgJOOUHplKs1cFsJibKsLNVlowgFNigdIKLiUJfOWqibVroKsBZKIDrQFRen7Nfh7jaGlx2lyQw-Oep7O1LYJQMKhJw5Wc5oeUBdDClFas02-sHGdwPc7LWZzvzTZvbaDEcza5uDPz87bHK2b6MdnU__06i1VLrCmft94Gh--NVTNMl5Gh01PpKbTBP8V1Ufyx6FNA</recordid><startdate>20131215</startdate><enddate>20131215</enddate><creator>Świętosławski, M.</creator><creator>Molenda, M.</creator><creator>Furczoń, K.</creator><creator>Dziembaj, R.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20131215</creationdate><title>Nanocomposite C/Li2MnSiO4 cathode material for lithium ion batteries</title><author>Świętosławski, M. ; Molenda, M. ; Furczoń, K. ; Dziembaj, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-e16c5c9710a8342468ae96d5e232d24c122250196caa19df4c812935322c17803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amorphization</topic><topic>Applied sciences</topic><topic>Carbon</topic><topic>Carbon coating</topic><topic>Cathodes</topic><topic>Crystal structure</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Exact sciences and technology</topic><topic>Li-ion batteries</topic><topic>Li2MnSiO4</topic><topic>Lithium-ion batteries</topic><topic>Materials</topic><topic>Nanocomposite</topic><topic>Nanostructure</topic><topic>Order disorder</topic><topic>Sol gel process</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Świętosławski, M.</creatorcontrib><creatorcontrib>Molenda, M.</creatorcontrib><creatorcontrib>Furczoń, K.</creatorcontrib><creatorcontrib>Dziembaj, R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Świętosławski, M.</au><au>Molenda, M.</au><au>Furczoń, K.</au><au>Dziembaj, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanocomposite C/Li2MnSiO4 cathode material for lithium ion batteries</atitle><jtitle>Journal of power sources</jtitle><date>2013-12-15</date><risdate>2013</risdate><volume>244</volume><spage>510</spage><epage>514</epage><pages>510-514</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>C/Li2MnSiO4 nanocomposite material was obtained by sol–gel method followed by carbon coating process. Electrochemical properties of nanosized C/Li2MnSiO4 cathode composite were studied in terms of changes in the long range ordering of the crystalline structure. Structural morphology was determined using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Ex-situ XRD studies confirmed amorphization of material during electrochemical process. Even though, C/Li2MnSiO4 composite revealed high discharge capacity (up to 185 mAh g−1) within 1.5–4.8 V, what corresponds to the exchange of more than one lithium-ion per formula unit (1.11 mole Li+). Electrochemical impedance spectroscopy (EIS) studies showed substantial changes in electrical properties of Li2MnSiO4 during amorphization process. The obtained results suggest that electrochemically formed amorphous Li2MnSiO4 has much higher electrical conductivity and Li+ ions diffusibility than as-obtained in sol–gel process crystalline one.
•C/Li2MnSiO4 nanocomposite was obtained by sol–gel method and carbon coating process.•Fine and uniform carbon nanocoatings on nanometric Li2MnSiO4 material were obtained.•Amorphous Li2MnSiO4 was formed during electrochemical process.•DLi+ was calculated for charged and discharged C/Li2MnSiO4 material.•C/Li2MnSiO4 nanocomposite revealed high discharge capacity 185 mA h g−1 at 1.5–4.8 V.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2013.02.078</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of power sources, 2013-12, Vol.244, p.510-514 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_proquest_miscellaneous_1513480346 |
source | ScienceDirect Journals |
subjects | Amorphization Applied sciences Carbon Carbon coating Cathodes Crystal structure Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Electrochemical impedance spectroscopy Exact sciences and technology Li-ion batteries Li2MnSiO4 Lithium-ion batteries Materials Nanocomposite Nanostructure Order disorder Sol gel process |
title | Nanocomposite C/Li2MnSiO4 cathode material for lithium ion batteries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A21%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanocomposite%20C/Li2MnSiO4%20cathode%20material%20for%20lithium%20ion%20batteries&rft.jtitle=Journal%20of%20power%20sources&rft.au=%C5%9Awi%C4%99tos%C5%82awski,%20M.&rft.date=2013-12-15&rft.volume=244&rft.spage=510&rft.epage=514&rft.pages=510-514&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2013.02.078&rft_dat=%3Cproquest_cross%3E1513480346%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-e16c5c9710a8342468ae96d5e232d24c122250196caa19df4c812935322c17803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1513480346&rft_id=info:pmid/&rfr_iscdi=true |