Loading…

Nanocomposite C/Li2MnSiO4 cathode material for lithium ion batteries

C/Li2MnSiO4 nanocomposite material was obtained by sol–gel method followed by carbon coating process. Electrochemical properties of nanosized C/Li2MnSiO4 cathode composite were studied in terms of changes in the long range ordering of the crystalline structure. Structural morphology was determined u...

Full description

Saved in:
Bibliographic Details
Published in:Journal of power sources 2013-12, Vol.244, p.510-514
Main Authors: Świętosławski, M., Molenda, M., Furczoń, K., Dziembaj, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c412t-e16c5c9710a8342468ae96d5e232d24c122250196caa19df4c812935322c17803
cites cdi_FETCH-LOGICAL-c412t-e16c5c9710a8342468ae96d5e232d24c122250196caa19df4c812935322c17803
container_end_page 514
container_issue
container_start_page 510
container_title Journal of power sources
container_volume 244
creator Świętosławski, M.
Molenda, M.
Furczoń, K.
Dziembaj, R.
description C/Li2MnSiO4 nanocomposite material was obtained by sol–gel method followed by carbon coating process. Electrochemical properties of nanosized C/Li2MnSiO4 cathode composite were studied in terms of changes in the long range ordering of the crystalline structure. Structural morphology was determined using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Ex-situ XRD studies confirmed amorphization of material during electrochemical process. Even though, C/Li2MnSiO4 composite revealed high discharge capacity (up to 185 mAh g−1) within 1.5–4.8 V, what corresponds to the exchange of more than one lithium-ion per formula unit (1.11 mole Li+). Electrochemical impedance spectroscopy (EIS) studies showed substantial changes in electrical properties of Li2MnSiO4 during amorphization process. The obtained results suggest that electrochemically formed amorphous Li2MnSiO4 has much higher electrical conductivity and Li+ ions diffusibility than as-obtained in sol–gel process crystalline one. •C/Li2MnSiO4 nanocomposite was obtained by sol–gel method and carbon coating process.•Fine and uniform carbon nanocoatings on nanometric Li2MnSiO4 material were obtained.•Amorphous Li2MnSiO4 was formed during electrochemical process.•DLi+ was calculated for charged and discharged C/Li2MnSiO4 material.•C/Li2MnSiO4 nanocomposite revealed high discharge capacity 185 mA h g−1 at 1.5–4.8 V.
doi_str_mv 10.1016/j.jpowsour.2013.02.078
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1513480346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775313003753</els_id><sourcerecordid>1513480346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-e16c5c9710a8342468ae96d5e232d24c122250196caa19df4c812935322c17803</originalsourceid><addsrcrecordid>eNqFkE1P3DAQhi1UJLbQv4ByqdRLsp6xHSe3oi1f0sIeoGfLOBPhKIkXOwvi35PV0l45zWGed17Nw9g58AI4lMuu6LbhLYVdLJCDKDgWXFdHbAGVFjlqpb6xBRe6yrVW4oR9T6njnANovmB_7u0YXBi2IfmJstVy7fFufPAbmTk7PYeGssFOFL3tszbErPfTs98NmQ9j9mSn_YbSGTtubZ_ox-c8ZX-vLh9XN_l6c327uljnTgJOOUHplKs1cFsJibKsLNVlowgFNigdIKLiUJfOWqibVroKsBZKIDrQFRen7Nfh7jaGlx2lyQw-Oep7O1LYJQMKhJw5Wc5oeUBdDClFas02-sHGdwPc7LWZzvzTZvbaDEcza5uDPz87bHK2b6MdnU__06i1VLrCmft94Gh--NVTNMl5Gh01PpKbTBP8V1Ufyx6FNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513480346</pqid></control><display><type>article</type><title>Nanocomposite C/Li2MnSiO4 cathode material for lithium ion batteries</title><source>ScienceDirect Journals</source><creator>Świętosławski, M. ; Molenda, M. ; Furczoń, K. ; Dziembaj, R.</creator><creatorcontrib>Świętosławski, M. ; Molenda, M. ; Furczoń, K. ; Dziembaj, R.</creatorcontrib><description>C/Li2MnSiO4 nanocomposite material was obtained by sol–gel method followed by carbon coating process. Electrochemical properties of nanosized C/Li2MnSiO4 cathode composite were studied in terms of changes in the long range ordering of the crystalline structure. Structural morphology was determined using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Ex-situ XRD studies confirmed amorphization of material during electrochemical process. Even though, C/Li2MnSiO4 composite revealed high discharge capacity (up to 185 mAh g−1) within 1.5–4.8 V, what corresponds to the exchange of more than one lithium-ion per formula unit (1.11 mole Li+). Electrochemical impedance spectroscopy (EIS) studies showed substantial changes in electrical properties of Li2MnSiO4 during amorphization process. The obtained results suggest that electrochemically formed amorphous Li2MnSiO4 has much higher electrical conductivity and Li+ ions diffusibility than as-obtained in sol–gel process crystalline one. •C/Li2MnSiO4 nanocomposite was obtained by sol–gel method and carbon coating process.•Fine and uniform carbon nanocoatings on nanometric Li2MnSiO4 material were obtained.•Amorphous Li2MnSiO4 was formed during electrochemical process.•DLi+ was calculated for charged and discharged C/Li2MnSiO4 material.•C/Li2MnSiO4 nanocomposite revealed high discharge capacity 185 mA h g−1 at 1.5–4.8 V.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2013.02.078</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Amorphization ; Applied sciences ; Carbon ; Carbon coating ; Cathodes ; Crystal structure ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Electrochemical impedance spectroscopy ; Exact sciences and technology ; Li-ion batteries ; Li2MnSiO4 ; Lithium-ion batteries ; Materials ; Nanocomposite ; Nanostructure ; Order disorder ; Sol gel process</subject><ispartof>Journal of power sources, 2013-12, Vol.244, p.510-514</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-e16c5c9710a8342468ae96d5e232d24c122250196caa19df4c812935322c17803</citedby><cites>FETCH-LOGICAL-c412t-e16c5c9710a8342468ae96d5e232d24c122250196caa19df4c812935322c17803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,778,782,787,788,23917,23918,25127,27911,27912</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27745782$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Świętosławski, M.</creatorcontrib><creatorcontrib>Molenda, M.</creatorcontrib><creatorcontrib>Furczoń, K.</creatorcontrib><creatorcontrib>Dziembaj, R.</creatorcontrib><title>Nanocomposite C/Li2MnSiO4 cathode material for lithium ion batteries</title><title>Journal of power sources</title><description>C/Li2MnSiO4 nanocomposite material was obtained by sol–gel method followed by carbon coating process. Electrochemical properties of nanosized C/Li2MnSiO4 cathode composite were studied in terms of changes in the long range ordering of the crystalline structure. Structural morphology was determined using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Ex-situ XRD studies confirmed amorphization of material during electrochemical process. Even though, C/Li2MnSiO4 composite revealed high discharge capacity (up to 185 mAh g−1) within 1.5–4.8 V, what corresponds to the exchange of more than one lithium-ion per formula unit (1.11 mole Li+). Electrochemical impedance spectroscopy (EIS) studies showed substantial changes in electrical properties of Li2MnSiO4 during amorphization process. The obtained results suggest that electrochemically formed amorphous Li2MnSiO4 has much higher electrical conductivity and Li+ ions diffusibility than as-obtained in sol–gel process crystalline one. •C/Li2MnSiO4 nanocomposite was obtained by sol–gel method and carbon coating process.•Fine and uniform carbon nanocoatings on nanometric Li2MnSiO4 material were obtained.•Amorphous Li2MnSiO4 was formed during electrochemical process.•DLi+ was calculated for charged and discharged C/Li2MnSiO4 material.•C/Li2MnSiO4 nanocomposite revealed high discharge capacity 185 mA h g−1 at 1.5–4.8 V.</description><subject>Amorphization</subject><subject>Applied sciences</subject><subject>Carbon</subject><subject>Carbon coating</subject><subject>Cathodes</subject><subject>Crystal structure</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Exact sciences and technology</subject><subject>Li-ion batteries</subject><subject>Li2MnSiO4</subject><subject>Lithium-ion batteries</subject><subject>Materials</subject><subject>Nanocomposite</subject><subject>Nanostructure</subject><subject>Order disorder</subject><subject>Sol gel process</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE1P3DAQhi1UJLbQv4ByqdRLsp6xHSe3oi1f0sIeoGfLOBPhKIkXOwvi35PV0l45zWGed17Nw9g58AI4lMuu6LbhLYVdLJCDKDgWXFdHbAGVFjlqpb6xBRe6yrVW4oR9T6njnANovmB_7u0YXBi2IfmJstVy7fFufPAbmTk7PYeGssFOFL3tszbErPfTs98NmQ9j9mSn_YbSGTtubZ_ox-c8ZX-vLh9XN_l6c327uljnTgJOOUHplKs1cFsJibKsLNVlowgFNigdIKLiUJfOWqibVroKsBZKIDrQFRen7Nfh7jaGlx2lyQw-Oep7O1LYJQMKhJw5Wc5oeUBdDClFas02-sHGdwPc7LWZzvzTZvbaDEcza5uDPz87bHK2b6MdnU__06i1VLrCmft94Gh--NVTNMl5Gh01PpKbTBP8V1Ufyx6FNA</recordid><startdate>20131215</startdate><enddate>20131215</enddate><creator>Świętosławski, M.</creator><creator>Molenda, M.</creator><creator>Furczoń, K.</creator><creator>Dziembaj, R.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20131215</creationdate><title>Nanocomposite C/Li2MnSiO4 cathode material for lithium ion batteries</title><author>Świętosławski, M. ; Molenda, M. ; Furczoń, K. ; Dziembaj, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-e16c5c9710a8342468ae96d5e232d24c122250196caa19df4c812935322c17803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amorphization</topic><topic>Applied sciences</topic><topic>Carbon</topic><topic>Carbon coating</topic><topic>Cathodes</topic><topic>Crystal structure</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Exact sciences and technology</topic><topic>Li-ion batteries</topic><topic>Li2MnSiO4</topic><topic>Lithium-ion batteries</topic><topic>Materials</topic><topic>Nanocomposite</topic><topic>Nanostructure</topic><topic>Order disorder</topic><topic>Sol gel process</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Świętosławski, M.</creatorcontrib><creatorcontrib>Molenda, M.</creatorcontrib><creatorcontrib>Furczoń, K.</creatorcontrib><creatorcontrib>Dziembaj, R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Świętosławski, M.</au><au>Molenda, M.</au><au>Furczoń, K.</au><au>Dziembaj, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanocomposite C/Li2MnSiO4 cathode material for lithium ion batteries</atitle><jtitle>Journal of power sources</jtitle><date>2013-12-15</date><risdate>2013</risdate><volume>244</volume><spage>510</spage><epage>514</epage><pages>510-514</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>C/Li2MnSiO4 nanocomposite material was obtained by sol–gel method followed by carbon coating process. Electrochemical properties of nanosized C/Li2MnSiO4 cathode composite were studied in terms of changes in the long range ordering of the crystalline structure. Structural morphology was determined using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Ex-situ XRD studies confirmed amorphization of material during electrochemical process. Even though, C/Li2MnSiO4 composite revealed high discharge capacity (up to 185 mAh g−1) within 1.5–4.8 V, what corresponds to the exchange of more than one lithium-ion per formula unit (1.11 mole Li+). Electrochemical impedance spectroscopy (EIS) studies showed substantial changes in electrical properties of Li2MnSiO4 during amorphization process. The obtained results suggest that electrochemically formed amorphous Li2MnSiO4 has much higher electrical conductivity and Li+ ions diffusibility than as-obtained in sol–gel process crystalline one. •C/Li2MnSiO4 nanocomposite was obtained by sol–gel method and carbon coating process.•Fine and uniform carbon nanocoatings on nanometric Li2MnSiO4 material were obtained.•Amorphous Li2MnSiO4 was formed during electrochemical process.•DLi+ was calculated for charged and discharged C/Li2MnSiO4 material.•C/Li2MnSiO4 nanocomposite revealed high discharge capacity 185 mA h g−1 at 1.5–4.8 V.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2013.02.078</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2013-12, Vol.244, p.510-514
issn 0378-7753
1873-2755
language eng
recordid cdi_proquest_miscellaneous_1513480346
source ScienceDirect Journals
subjects Amorphization
Applied sciences
Carbon
Carbon coating
Cathodes
Crystal structure
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Electrochemical impedance spectroscopy
Exact sciences and technology
Li-ion batteries
Li2MnSiO4
Lithium-ion batteries
Materials
Nanocomposite
Nanostructure
Order disorder
Sol gel process
title Nanocomposite C/Li2MnSiO4 cathode material for lithium ion batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T21%3A21%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanocomposite%20C/Li2MnSiO4%20cathode%20material%20for%20lithium%20ion%20batteries&rft.jtitle=Journal%20of%20power%20sources&rft.au=%C5%9Awi%C4%99tos%C5%82awski,%20M.&rft.date=2013-12-15&rft.volume=244&rft.spage=510&rft.epage=514&rft.pages=510-514&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2013.02.078&rft_dat=%3Cproquest_cross%3E1513480346%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-e16c5c9710a8342468ae96d5e232d24c122250196caa19df4c812935322c17803%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1513480346&rft_id=info:pmid/&rfr_iscdi=true