Loading…
Kinetics of struvite precipitation in synthetic biologically treated swine wastewaters
An experimental design was set up to understand the influence of five process parameters on the kinetics of struvite precipitation in synthetic swine wastewaters. The responses studied were the kinetics of phosphorus (P) removal, the struvite precipitation rate and the dissolution rate of amorphous...
Saved in:
Published in: | Environmental technology 2014-05, Vol.35 (10), p.1250-1262 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c545t-77b4e7136933a14c2ad3456564a5b200bd10adf16a6d981bea2fa78bb339b6fd3 |
---|---|
cites | |
container_end_page | 1262 |
container_issue | 10 |
container_start_page | 1250 |
container_title | Environmental technology |
container_volume | 35 |
creator | Capdevielle, Aurélie Sýkorová, Eva Béline, Fabrice Daumer, Marie-Line |
description | An experimental design was set up to understand the influence of five process parameters on the kinetics of struvite precipitation in synthetic swine wastewaters. The responses studied were the kinetics of phosphorus (P) removal, the struvite precipitation rate and the dissolution rate of amorphous calcium phosphates (ACP). The kinetic study showed that the P-removal was complete in less than 1 h and was influenced positively by the added MgO. The precipitation of struvite with MgO was confirmed to follow a first-order kinetic. This study showed that ACP co-precipitated with struvite during the first 30 min. Afterwards, ACP dissolved to maintain the phosphates balance limiting the struvite growth. An initial Mg:Ca>1.5 induced a complete dissolution of ACP in 1 h. Another experiment was conducted and it validated the results of the statistical model. This experiment also determined that 7–10 h was the best time to recover large crystals. After 10 h, the crystals were broken by stirring. |
doi_str_mv | 10.1080/09593330.2013.865790 |
format | article |
fullrecord | <record><control><sourceid>proquest_fao_a</sourceid><recordid>TN_cdi_proquest_miscellaneous_1514431350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1505342427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-77b4e7136933a14c2ad3456564a5b200bd10adf16a6d981bea2fa78bb339b6fd3</originalsourceid><addsrcrecordid>eNqNkV1rFDEUhgdRbK3-A9EBEfRi15Pv5EpKaa244IVWvAtnZjJtyuxkTbJd9t-bZXareFOvEsLzvpyTp6peEpgT0PABjDCMMZhTIGyupVAGHlXHhCsz41r9fPzX_ah6ltItANVCm6fVEeUKiKH0uPrxxY8u-zbVoa9Tjus7n129iq71K58x-zDWfqzTdsw3O65ufBjCtW9xGLZ1jg6z6-q0KS31BlN2m_IQ0_PqSY9Dci_250l1dXH-_exytvj66fPZ6WLWCi7yTKmGO0WYLJsg4S3FjnEhheQoGgrQdASw64lE2RlNGoe0R6WbhjHTyL5jJ9X7qfcGB7uKfolxawN6e3m6sLs3oMIYJuUdKey7iV3F8GvtUrZLn1o3DDi6sE6WSE6pBCHYw6ggnDPCBPwHCoJxyqkq6Jt_0NuwjmP5H0u4UUQJwnZj8olqY0gpuv5-LwJ2Z94ezNudeTuZL7FX-_J1s3TdfeigugBv9wCmYq-POLY-_eE0I1pTU7iPE-fHPsQlbkIcOptxO4R4CLEHRnk9NfQYLF7HErj6VgAJAEJSDew3ff_RZw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1497175131</pqid></control><display><type>article</type><title>Kinetics of struvite precipitation in synthetic biologically treated swine wastewaters</title><source>Taylor and Francis Science and Technology Collection</source><creator>Capdevielle, Aurélie ; Sýkorová, Eva ; Béline, Fabrice ; Daumer, Marie-Line</creator><creatorcontrib>Capdevielle, Aurélie ; Sýkorová, Eva ; Béline, Fabrice ; Daumer, Marie-Line</creatorcontrib><description>An experimental design was set up to understand the influence of five process parameters on the kinetics of struvite precipitation in synthetic swine wastewaters. The responses studied were the kinetics of phosphorus (P) removal, the struvite precipitation rate and the dissolution rate of amorphous calcium phosphates (ACP). The kinetic study showed that the P-removal was complete in less than 1 h and was influenced positively by the added MgO. The precipitation of struvite with MgO was confirmed to follow a first-order kinetic. This study showed that ACP co-precipitated with struvite during the first 30 min. Afterwards, ACP dissolved to maintain the phosphates balance limiting the struvite growth. An initial Mg:Ca>1.5 induced a complete dissolution of ACP in 1 h. Another experiment was conducted and it validated the results of the statistical model. This experiment also determined that 7–10 h was the best time to recover large crystals. After 10 h, the crystals were broken by stirring.</description><identifier>ISSN: 1479-487X</identifier><identifier>ISSN: 0959-3330</identifier><identifier>EISSN: 1479-487X</identifier><identifier>DOI: 10.1080/09593330.2013.865790</identifier><identifier>PMID: 24701922</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>amorphous calcium phosphate ; Animals ; Applied sciences ; Bioreactors ; Calcium phosphate ; calcium phosphates ; Chemical Precipitation ; Constraining ; coprecipitation ; Crystals ; Dissolution ; Environmental Sciences ; environmental technology ; Exact sciences and technology ; experimental design ; General purification processes ; Hydrogen-Ion Concentration ; Kinetics ; magnesium ammonium phosphate ; Magnesium Compounds - chemistry ; Magnesium Oxide ; mixing ; Models, Statistical ; Phosphates - chemistry ; phosphorus ; Pollution ; Precipitation ; statistical models ; Struvite ; Swine ; swine wastewaters ; Waste Management ; Waste water ; Waste Water - chemistry ; wastewater ; Wastewaters ; Water treatment and pollution</subject><ispartof>Environmental technology, 2014-05, Vol.35 (10), p.1250-1262</ispartof><rights>2013 Taylor & Francis 2013</rights><rights>2015 INIST-CNRS</rights><rights>2013 Taylor & Francis</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c545t-77b4e7136933a14c2ad3456564a5b200bd10adf16a6d981bea2fa78bb339b6fd3</citedby><orcidid>0000-0003-1885-1842</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28318829$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24701922$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02599366$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Capdevielle, Aurélie</creatorcontrib><creatorcontrib>Sýkorová, Eva</creatorcontrib><creatorcontrib>Béline, Fabrice</creatorcontrib><creatorcontrib>Daumer, Marie-Line</creatorcontrib><title>Kinetics of struvite precipitation in synthetic biologically treated swine wastewaters</title><title>Environmental technology</title><addtitle>Environ Technol</addtitle><description>An experimental design was set up to understand the influence of five process parameters on the kinetics of struvite precipitation in synthetic swine wastewaters. The responses studied were the kinetics of phosphorus (P) removal, the struvite precipitation rate and the dissolution rate of amorphous calcium phosphates (ACP). The kinetic study showed that the P-removal was complete in less than 1 h and was influenced positively by the added MgO. The precipitation of struvite with MgO was confirmed to follow a first-order kinetic. This study showed that ACP co-precipitated with struvite during the first 30 min. Afterwards, ACP dissolved to maintain the phosphates balance limiting the struvite growth. An initial Mg:Ca>1.5 induced a complete dissolution of ACP in 1 h. Another experiment was conducted and it validated the results of the statistical model. This experiment also determined that 7–10 h was the best time to recover large crystals. After 10 h, the crystals were broken by stirring.</description><subject>amorphous calcium phosphate</subject><subject>Animals</subject><subject>Applied sciences</subject><subject>Bioreactors</subject><subject>Calcium phosphate</subject><subject>calcium phosphates</subject><subject>Chemical Precipitation</subject><subject>Constraining</subject><subject>coprecipitation</subject><subject>Crystals</subject><subject>Dissolution</subject><subject>Environmental Sciences</subject><subject>environmental technology</subject><subject>Exact sciences and technology</subject><subject>experimental design</subject><subject>General purification processes</subject><subject>Hydrogen-Ion Concentration</subject><subject>Kinetics</subject><subject>magnesium ammonium phosphate</subject><subject>Magnesium Compounds - chemistry</subject><subject>Magnesium Oxide</subject><subject>mixing</subject><subject>Models, Statistical</subject><subject>Phosphates - chemistry</subject><subject>phosphorus</subject><subject>Pollution</subject><subject>Precipitation</subject><subject>statistical models</subject><subject>Struvite</subject><subject>Swine</subject><subject>swine wastewaters</subject><subject>Waste Management</subject><subject>Waste water</subject><subject>Waste Water - chemistry</subject><subject>wastewater</subject><subject>Wastewaters</subject><subject>Water treatment and pollution</subject><issn>1479-487X</issn><issn>0959-3330</issn><issn>1479-487X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkV1rFDEUhgdRbK3-A9EBEfRi15Pv5EpKaa244IVWvAtnZjJtyuxkTbJd9t-bZXareFOvEsLzvpyTp6peEpgT0PABjDCMMZhTIGyupVAGHlXHhCsz41r9fPzX_ah6ltItANVCm6fVEeUKiKH0uPrxxY8u-zbVoa9Tjus7n129iq71K58x-zDWfqzTdsw3O65ufBjCtW9xGLZ1jg6z6-q0KS31BlN2m_IQ0_PqSY9Dci_250l1dXH-_exytvj66fPZ6WLWCi7yTKmGO0WYLJsg4S3FjnEhheQoGgrQdASw64lE2RlNGoe0R6WbhjHTyL5jJ9X7qfcGB7uKfolxawN6e3m6sLs3oMIYJuUdKey7iV3F8GvtUrZLn1o3DDi6sE6WSE6pBCHYw6ggnDPCBPwHCoJxyqkq6Jt_0NuwjmP5H0u4UUQJwnZj8olqY0gpuv5-LwJ2Z94ezNudeTuZL7FX-_J1s3TdfeigugBv9wCmYq-POLY-_eE0I1pTU7iPE-fHPsQlbkIcOptxO4R4CLEHRnk9NfQYLF7HErj6VgAJAEJSDew3ff_RZw</recordid><startdate>20140519</startdate><enddate>20140519</enddate><creator>Capdevielle, Aurélie</creator><creator>Sýkorová, Eva</creator><creator>Béline, Fabrice</creator><creator>Daumer, Marie-Line</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><general>Taylor & Francis: STM, Behavioural Science and Public Health Titles</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7QH</scope><scope>7UA</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7X8</scope><scope>7SU</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1885-1842</orcidid></search><sort><creationdate>20140519</creationdate><title>Kinetics of struvite precipitation in synthetic biologically treated swine wastewaters</title><author>Capdevielle, Aurélie ; Sýkorová, Eva ; Béline, Fabrice ; Daumer, Marie-Line</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-77b4e7136933a14c2ad3456564a5b200bd10adf16a6d981bea2fa78bb339b6fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>amorphous calcium phosphate</topic><topic>Animals</topic><topic>Applied sciences</topic><topic>Bioreactors</topic><topic>Calcium phosphate</topic><topic>calcium phosphates</topic><topic>Chemical Precipitation</topic><topic>Constraining</topic><topic>coprecipitation</topic><topic>Crystals</topic><topic>Dissolution</topic><topic>Environmental Sciences</topic><topic>environmental technology</topic><topic>Exact sciences and technology</topic><topic>experimental design</topic><topic>General purification processes</topic><topic>Hydrogen-Ion Concentration</topic><topic>Kinetics</topic><topic>magnesium ammonium phosphate</topic><topic>Magnesium Compounds - chemistry</topic><topic>Magnesium Oxide</topic><topic>mixing</topic><topic>Models, Statistical</topic><topic>Phosphates - chemistry</topic><topic>phosphorus</topic><topic>Pollution</topic><topic>Precipitation</topic><topic>statistical models</topic><topic>Struvite</topic><topic>Swine</topic><topic>swine wastewaters</topic><topic>Waste Management</topic><topic>Waste water</topic><topic>Waste Water - chemistry</topic><topic>wastewater</topic><topic>Wastewaters</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Capdevielle, Aurélie</creatorcontrib><creatorcontrib>Sýkorová, Eva</creatorcontrib><creatorcontrib>Béline, Fabrice</creatorcontrib><creatorcontrib>Daumer, Marie-Line</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>Environmental Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Environmental technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Capdevielle, Aurélie</au><au>Sýkorová, Eva</au><au>Béline, Fabrice</au><au>Daumer, Marie-Line</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetics of struvite precipitation in synthetic biologically treated swine wastewaters</atitle><jtitle>Environmental technology</jtitle><addtitle>Environ Technol</addtitle><date>2014-05-19</date><risdate>2014</risdate><volume>35</volume><issue>10</issue><spage>1250</spage><epage>1262</epage><pages>1250-1262</pages><issn>1479-487X</issn><issn>0959-3330</issn><eissn>1479-487X</eissn><abstract>An experimental design was set up to understand the influence of five process parameters on the kinetics of struvite precipitation in synthetic swine wastewaters. The responses studied were the kinetics of phosphorus (P) removal, the struvite precipitation rate and the dissolution rate of amorphous calcium phosphates (ACP). The kinetic study showed that the P-removal was complete in less than 1 h and was influenced positively by the added MgO. The precipitation of struvite with MgO was confirmed to follow a first-order kinetic. This study showed that ACP co-precipitated with struvite during the first 30 min. Afterwards, ACP dissolved to maintain the phosphates balance limiting the struvite growth. An initial Mg:Ca>1.5 induced a complete dissolution of ACP in 1 h. Another experiment was conducted and it validated the results of the statistical model. This experiment also determined that 7–10 h was the best time to recover large crystals. After 10 h, the crystals were broken by stirring.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><pmid>24701922</pmid><doi>10.1080/09593330.2013.865790</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1885-1842</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1479-487X |
ispartof | Environmental technology, 2014-05, Vol.35 (10), p.1250-1262 |
issn | 1479-487X 0959-3330 1479-487X |
language | eng |
recordid | cdi_proquest_miscellaneous_1514431350 |
source | Taylor and Francis Science and Technology Collection |
subjects | amorphous calcium phosphate Animals Applied sciences Bioreactors Calcium phosphate calcium phosphates Chemical Precipitation Constraining coprecipitation Crystals Dissolution Environmental Sciences environmental technology Exact sciences and technology experimental design General purification processes Hydrogen-Ion Concentration Kinetics magnesium ammonium phosphate Magnesium Compounds - chemistry Magnesium Oxide mixing Models, Statistical Phosphates - chemistry phosphorus Pollution Precipitation statistical models Struvite Swine swine wastewaters Waste Management Waste water Waste Water - chemistry wastewater Wastewaters Water treatment and pollution |
title | Kinetics of struvite precipitation in synthetic biologically treated swine wastewaters |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A48%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetics%20of%20struvite%20precipitation%20in%20synthetic%20biologically%20treated%20swine%20wastewaters&rft.jtitle=Environmental%20technology&rft.au=Capdevielle,%20Aur%C3%A9lie&rft.date=2014-05-19&rft.volume=35&rft.issue=10&rft.spage=1250&rft.epage=1262&rft.pages=1250-1262&rft.issn=1479-487X&rft.eissn=1479-487X&rft_id=info:doi/10.1080/09593330.2013.865790&rft_dat=%3Cproquest_fao_a%3E1505342427%3C/proquest_fao_a%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c545t-77b4e7136933a14c2ad3456564a5b200bd10adf16a6d981bea2fa78bb339b6fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1497175131&rft_id=info:pmid/24701922&rfr_iscdi=true |