Loading…

Kinetics of struvite precipitation in synthetic biologically treated swine wastewaters

An experimental design was set up to understand the influence of five process parameters on the kinetics of struvite precipitation in synthetic swine wastewaters. The responses studied were the kinetics of phosphorus (P) removal, the struvite precipitation rate and the dissolution rate of amorphous...

Full description

Saved in:
Bibliographic Details
Published in:Environmental technology 2014-05, Vol.35 (10), p.1250-1262
Main Authors: Capdevielle, Aurélie, Sýkorová, Eva, Béline, Fabrice, Daumer, Marie-Line
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c545t-77b4e7136933a14c2ad3456564a5b200bd10adf16a6d981bea2fa78bb339b6fd3
cites
container_end_page 1262
container_issue 10
container_start_page 1250
container_title Environmental technology
container_volume 35
creator Capdevielle, Aurélie
Sýkorová, Eva
Béline, Fabrice
Daumer, Marie-Line
description An experimental design was set up to understand the influence of five process parameters on the kinetics of struvite precipitation in synthetic swine wastewaters. The responses studied were the kinetics of phosphorus (P) removal, the struvite precipitation rate and the dissolution rate of amorphous calcium phosphates (ACP). The kinetic study showed that the P-removal was complete in less than 1 h and was influenced positively by the added MgO. The precipitation of struvite with MgO was confirmed to follow a first-order kinetic. This study showed that ACP co-precipitated with struvite during the first 30 min. Afterwards, ACP dissolved to maintain the phosphates balance limiting the struvite growth. An initial Mg:Ca>1.5 induced a complete dissolution of ACP in 1 h. Another experiment was conducted and it validated the results of the statistical model. This experiment also determined that 7–10 h was the best time to recover large crystals. After 10 h, the crystals were broken by stirring.
doi_str_mv 10.1080/09593330.2013.865790
format article
fullrecord <record><control><sourceid>proquest_fao_a</sourceid><recordid>TN_cdi_proquest_miscellaneous_1514431350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1505342427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-77b4e7136933a14c2ad3456564a5b200bd10adf16a6d981bea2fa78bb339b6fd3</originalsourceid><addsrcrecordid>eNqNkV1rFDEUhgdRbK3-A9EBEfRi15Pv5EpKaa244IVWvAtnZjJtyuxkTbJd9t-bZXareFOvEsLzvpyTp6peEpgT0PABjDCMMZhTIGyupVAGHlXHhCsz41r9fPzX_ah6ltItANVCm6fVEeUKiKH0uPrxxY8u-zbVoa9Tjus7n129iq71K58x-zDWfqzTdsw3O65ufBjCtW9xGLZ1jg6z6-q0KS31BlN2m_IQ0_PqSY9Dci_250l1dXH-_exytvj66fPZ6WLWCi7yTKmGO0WYLJsg4S3FjnEhheQoGgrQdASw64lE2RlNGoe0R6WbhjHTyL5jJ9X7qfcGB7uKfolxawN6e3m6sLs3oMIYJuUdKey7iV3F8GvtUrZLn1o3DDi6sE6WSE6pBCHYw6ggnDPCBPwHCoJxyqkq6Jt_0NuwjmP5H0u4UUQJwnZj8olqY0gpuv5-LwJ2Z94ezNudeTuZL7FX-_J1s3TdfeigugBv9wCmYq-POLY-_eE0I1pTU7iPE-fHPsQlbkIcOptxO4R4CLEHRnk9NfQYLF7HErj6VgAJAEJSDew3ff_RZw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1497175131</pqid></control><display><type>article</type><title>Kinetics of struvite precipitation in synthetic biologically treated swine wastewaters</title><source>Taylor and Francis Science and Technology Collection</source><creator>Capdevielle, Aurélie ; Sýkorová, Eva ; Béline, Fabrice ; Daumer, Marie-Line</creator><creatorcontrib>Capdevielle, Aurélie ; Sýkorová, Eva ; Béline, Fabrice ; Daumer, Marie-Line</creatorcontrib><description>An experimental design was set up to understand the influence of five process parameters on the kinetics of struvite precipitation in synthetic swine wastewaters. The responses studied were the kinetics of phosphorus (P) removal, the struvite precipitation rate and the dissolution rate of amorphous calcium phosphates (ACP). The kinetic study showed that the P-removal was complete in less than 1 h and was influenced positively by the added MgO. The precipitation of struvite with MgO was confirmed to follow a first-order kinetic. This study showed that ACP co-precipitated with struvite during the first 30 min. Afterwards, ACP dissolved to maintain the phosphates balance limiting the struvite growth. An initial Mg:Ca&gt;1.5 induced a complete dissolution of ACP in 1 h. Another experiment was conducted and it validated the results of the statistical model. This experiment also determined that 7–10 h was the best time to recover large crystals. After 10 h, the crystals were broken by stirring.</description><identifier>ISSN: 1479-487X</identifier><identifier>ISSN: 0959-3330</identifier><identifier>EISSN: 1479-487X</identifier><identifier>DOI: 10.1080/09593330.2013.865790</identifier><identifier>PMID: 24701922</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>amorphous calcium phosphate ; Animals ; Applied sciences ; Bioreactors ; Calcium phosphate ; calcium phosphates ; Chemical Precipitation ; Constraining ; coprecipitation ; Crystals ; Dissolution ; Environmental Sciences ; environmental technology ; Exact sciences and technology ; experimental design ; General purification processes ; Hydrogen-Ion Concentration ; Kinetics ; magnesium ammonium phosphate ; Magnesium Compounds - chemistry ; Magnesium Oxide ; mixing ; Models, Statistical ; Phosphates - chemistry ; phosphorus ; Pollution ; Precipitation ; statistical models ; Struvite ; Swine ; swine wastewaters ; Waste Management ; Waste water ; Waste Water - chemistry ; wastewater ; Wastewaters ; Water treatment and pollution</subject><ispartof>Environmental technology, 2014-05, Vol.35 (10), p.1250-1262</ispartof><rights>2013 Taylor &amp; Francis 2013</rights><rights>2015 INIST-CNRS</rights><rights>2013 Taylor &amp; Francis</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c545t-77b4e7136933a14c2ad3456564a5b200bd10adf16a6d981bea2fa78bb339b6fd3</citedby><orcidid>0000-0003-1885-1842</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28318829$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24701922$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02599366$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Capdevielle, Aurélie</creatorcontrib><creatorcontrib>Sýkorová, Eva</creatorcontrib><creatorcontrib>Béline, Fabrice</creatorcontrib><creatorcontrib>Daumer, Marie-Line</creatorcontrib><title>Kinetics of struvite precipitation in synthetic biologically treated swine wastewaters</title><title>Environmental technology</title><addtitle>Environ Technol</addtitle><description>An experimental design was set up to understand the influence of five process parameters on the kinetics of struvite precipitation in synthetic swine wastewaters. The responses studied were the kinetics of phosphorus (P) removal, the struvite precipitation rate and the dissolution rate of amorphous calcium phosphates (ACP). The kinetic study showed that the P-removal was complete in less than 1 h and was influenced positively by the added MgO. The precipitation of struvite with MgO was confirmed to follow a first-order kinetic. This study showed that ACP co-precipitated with struvite during the first 30 min. Afterwards, ACP dissolved to maintain the phosphates balance limiting the struvite growth. An initial Mg:Ca&gt;1.5 induced a complete dissolution of ACP in 1 h. Another experiment was conducted and it validated the results of the statistical model. This experiment also determined that 7–10 h was the best time to recover large crystals. After 10 h, the crystals were broken by stirring.</description><subject>amorphous calcium phosphate</subject><subject>Animals</subject><subject>Applied sciences</subject><subject>Bioreactors</subject><subject>Calcium phosphate</subject><subject>calcium phosphates</subject><subject>Chemical Precipitation</subject><subject>Constraining</subject><subject>coprecipitation</subject><subject>Crystals</subject><subject>Dissolution</subject><subject>Environmental Sciences</subject><subject>environmental technology</subject><subject>Exact sciences and technology</subject><subject>experimental design</subject><subject>General purification processes</subject><subject>Hydrogen-Ion Concentration</subject><subject>Kinetics</subject><subject>magnesium ammonium phosphate</subject><subject>Magnesium Compounds - chemistry</subject><subject>Magnesium Oxide</subject><subject>mixing</subject><subject>Models, Statistical</subject><subject>Phosphates - chemistry</subject><subject>phosphorus</subject><subject>Pollution</subject><subject>Precipitation</subject><subject>statistical models</subject><subject>Struvite</subject><subject>Swine</subject><subject>swine wastewaters</subject><subject>Waste Management</subject><subject>Waste water</subject><subject>Waste Water - chemistry</subject><subject>wastewater</subject><subject>Wastewaters</subject><subject>Water treatment and pollution</subject><issn>1479-487X</issn><issn>0959-3330</issn><issn>1479-487X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkV1rFDEUhgdRbK3-A9EBEfRi15Pv5EpKaa244IVWvAtnZjJtyuxkTbJd9t-bZXareFOvEsLzvpyTp6peEpgT0PABjDCMMZhTIGyupVAGHlXHhCsz41r9fPzX_ah6ltItANVCm6fVEeUKiKH0uPrxxY8u-zbVoa9Tjus7n129iq71K58x-zDWfqzTdsw3O65ufBjCtW9xGLZ1jg6z6-q0KS31BlN2m_IQ0_PqSY9Dci_250l1dXH-_exytvj66fPZ6WLWCi7yTKmGO0WYLJsg4S3FjnEhheQoGgrQdASw64lE2RlNGoe0R6WbhjHTyL5jJ9X7qfcGB7uKfolxawN6e3m6sLs3oMIYJuUdKey7iV3F8GvtUrZLn1o3DDi6sE6WSE6pBCHYw6ggnDPCBPwHCoJxyqkq6Jt_0NuwjmP5H0u4UUQJwnZj8olqY0gpuv5-LwJ2Z94ezNudeTuZL7FX-_J1s3TdfeigugBv9wCmYq-POLY-_eE0I1pTU7iPE-fHPsQlbkIcOptxO4R4CLEHRnk9NfQYLF7HErj6VgAJAEJSDew3ff_RZw</recordid><startdate>20140519</startdate><enddate>20140519</enddate><creator>Capdevielle, Aurélie</creator><creator>Sýkorová, Eva</creator><creator>Béline, Fabrice</creator><creator>Daumer, Marie-Line</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><general>Taylor &amp; Francis: STM, Behavioural Science and Public Health Titles</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7QH</scope><scope>7UA</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7X8</scope><scope>7SU</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1885-1842</orcidid></search><sort><creationdate>20140519</creationdate><title>Kinetics of struvite precipitation in synthetic biologically treated swine wastewaters</title><author>Capdevielle, Aurélie ; Sýkorová, Eva ; Béline, Fabrice ; Daumer, Marie-Line</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-77b4e7136933a14c2ad3456564a5b200bd10adf16a6d981bea2fa78bb339b6fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>amorphous calcium phosphate</topic><topic>Animals</topic><topic>Applied sciences</topic><topic>Bioreactors</topic><topic>Calcium phosphate</topic><topic>calcium phosphates</topic><topic>Chemical Precipitation</topic><topic>Constraining</topic><topic>coprecipitation</topic><topic>Crystals</topic><topic>Dissolution</topic><topic>Environmental Sciences</topic><topic>environmental technology</topic><topic>Exact sciences and technology</topic><topic>experimental design</topic><topic>General purification processes</topic><topic>Hydrogen-Ion Concentration</topic><topic>Kinetics</topic><topic>magnesium ammonium phosphate</topic><topic>Magnesium Compounds - chemistry</topic><topic>Magnesium Oxide</topic><topic>mixing</topic><topic>Models, Statistical</topic><topic>Phosphates - chemistry</topic><topic>phosphorus</topic><topic>Pollution</topic><topic>Precipitation</topic><topic>statistical models</topic><topic>Struvite</topic><topic>Swine</topic><topic>swine wastewaters</topic><topic>Waste Management</topic><topic>Waste water</topic><topic>Waste Water - chemistry</topic><topic>wastewater</topic><topic>Wastewaters</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Capdevielle, Aurélie</creatorcontrib><creatorcontrib>Sýkorová, Eva</creatorcontrib><creatorcontrib>Béline, Fabrice</creatorcontrib><creatorcontrib>Daumer, Marie-Line</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>Environmental Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Environmental technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Capdevielle, Aurélie</au><au>Sýkorová, Eva</au><au>Béline, Fabrice</au><au>Daumer, Marie-Line</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetics of struvite precipitation in synthetic biologically treated swine wastewaters</atitle><jtitle>Environmental technology</jtitle><addtitle>Environ Technol</addtitle><date>2014-05-19</date><risdate>2014</risdate><volume>35</volume><issue>10</issue><spage>1250</spage><epage>1262</epage><pages>1250-1262</pages><issn>1479-487X</issn><issn>0959-3330</issn><eissn>1479-487X</eissn><abstract>An experimental design was set up to understand the influence of five process parameters on the kinetics of struvite precipitation in synthetic swine wastewaters. The responses studied were the kinetics of phosphorus (P) removal, the struvite precipitation rate and the dissolution rate of amorphous calcium phosphates (ACP). The kinetic study showed that the P-removal was complete in less than 1 h and was influenced positively by the added MgO. The precipitation of struvite with MgO was confirmed to follow a first-order kinetic. This study showed that ACP co-precipitated with struvite during the first 30 min. Afterwards, ACP dissolved to maintain the phosphates balance limiting the struvite growth. An initial Mg:Ca&gt;1.5 induced a complete dissolution of ACP in 1 h. Another experiment was conducted and it validated the results of the statistical model. This experiment also determined that 7–10 h was the best time to recover large crystals. After 10 h, the crystals were broken by stirring.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><pmid>24701922</pmid><doi>10.1080/09593330.2013.865790</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1885-1842</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1479-487X
ispartof Environmental technology, 2014-05, Vol.35 (10), p.1250-1262
issn 1479-487X
0959-3330
1479-487X
language eng
recordid cdi_proquest_miscellaneous_1514431350
source Taylor and Francis Science and Technology Collection
subjects amorphous calcium phosphate
Animals
Applied sciences
Bioreactors
Calcium phosphate
calcium phosphates
Chemical Precipitation
Constraining
coprecipitation
Crystals
Dissolution
Environmental Sciences
environmental technology
Exact sciences and technology
experimental design
General purification processes
Hydrogen-Ion Concentration
Kinetics
magnesium ammonium phosphate
Magnesium Compounds - chemistry
Magnesium Oxide
mixing
Models, Statistical
Phosphates - chemistry
phosphorus
Pollution
Precipitation
statistical models
Struvite
Swine
swine wastewaters
Waste Management
Waste water
Waste Water - chemistry
wastewater
Wastewaters
Water treatment and pollution
title Kinetics of struvite precipitation in synthetic biologically treated swine wastewaters
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A48%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_fao_a&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetics%20of%20struvite%20precipitation%20in%20synthetic%20biologically%20treated%20swine%20wastewaters&rft.jtitle=Environmental%20technology&rft.au=Capdevielle,%20Aur%C3%A9lie&rft.date=2014-05-19&rft.volume=35&rft.issue=10&rft.spage=1250&rft.epage=1262&rft.pages=1250-1262&rft.issn=1479-487X&rft.eissn=1479-487X&rft_id=info:doi/10.1080/09593330.2013.865790&rft_dat=%3Cproquest_fao_a%3E1505342427%3C/proquest_fao_a%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c545t-77b4e7136933a14c2ad3456564a5b200bd10adf16a6d981bea2fa78bb339b6fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1497175131&rft_id=info:pmid/24701922&rfr_iscdi=true