Loading…

Production of D-arabitol from raw glycerol by Candida quercitrusa

To promote the effective use of raw glycerol (a by-product of biodiesel production), 110 yeast strains that produce D-arabitol from glycerol were isolated from environmental samples. Among them, strain 17-2A was an effective D-arabitol producer in the presence of 250 g/l glycerol and was identified...

Full description

Saved in:
Bibliographic Details
Published in:Applied microbiology and biotechnology 2014-04, Vol.98 (7), p.2947-2953
Main Authors: Yoshikawa, Jun, Habe, Hiroshi, Morita, Tomotake, Fukuoka, Tokuma, Imura, Tomohiro, Iwabuchi, Hiroyuki, Uemura, Shingo, Tamura, Takamitsu, Kitamoto, Dai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To promote the effective use of raw glycerol (a by-product of biodiesel production), 110 yeast strains that produce D-arabitol from glycerol were isolated from environmental samples. Among them, strain 17-2A was an effective D-arabitol producer in the presence of 250 g/l glycerol and was identified as Candida quercitrusa based on morphological, physicochemical, and phylogenetic analyses. C. quercitrusa type strain NBRC1022 produced the greatest quantity of D-arabitol (41.7 g/l) when the ability to produce D-arabitol from raw glycerol was compared among C. quercitrusa 17-2A and its phylogenetically related strains in flask culture. Under optimized culture conditions, strain NBRC1022 produced D-arabitol at a concentration of 58.2 g/l after a 7-day cultivation in 250 g/l glycerol, 6 g/l yeast extract, and 2 g/l CaClâ‚‚. The culture conditions were further investigated with raw glycerol using a jar fermenter; the concentration of D-arabitol reached 67.1 g/l after 7 days and 85.1 g/l after 10 days, respectively, which corresponded to 0.40 g/g of glycerol. To our knowledge, the present D-arabitol yield from glycerol is higher than reported previously using microbial production.
ISSN:0175-7598
1432-0614
DOI:10.1007/s00253-013-5449-x