Loading…

3D assessment of stent cell size and side branch access in intravascular optical coherence tomographic pullback runs

Abstract We present a semi-automatic approach to assess the maximum circular unsupported surface area (MCUSA) of selected stent cells and the side branch access through stent cells in intravascular optical coherence tomography (IVOCT) pullback runs. Such 3D information may influence coronary interve...

Full description

Saved in:
Bibliographic Details
Published in:Computerized medical imaging and graphics 2014-03, Vol.38 (2), p.113-122
Main Authors: Wang, Ancong, Eggermont, Jeroen, Dekker, Niels, de Koning, Patrick J.H, Reiber, Johan H.C, Dijkstra, Jouke
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c465t-8ca92609b66cda36b0f848a486a2f974b2b711c83f29e0a1d19217bd077889013
cites cdi_FETCH-LOGICAL-c465t-8ca92609b66cda36b0f848a486a2f974b2b711c83f29e0a1d19217bd077889013
container_end_page 122
container_issue 2
container_start_page 113
container_title Computerized medical imaging and graphics
container_volume 38
creator Wang, Ancong
Eggermont, Jeroen
Dekker, Niels
de Koning, Patrick J.H
Reiber, Johan H.C
Dijkstra, Jouke
description Abstract We present a semi-automatic approach to assess the maximum circular unsupported surface area (MCUSA) of selected stent cells and the side branch access through stent cells in intravascular optical coherence tomography (IVOCT) pullback runs. Such 3D information may influence coronary interventions, stent design, blood flow analysis or prognostic evaluation. First, the stent struts are detected automatically and stent cells are reconstructed with users’ assistance. Using cylinder fitting, a 2D approximation of the stent cell is generated for MCUSA detection and measurement. Next, a stent surface is reconstructed and stent-covered side branches are detected. Both the stent cell contours and side branch lumen contours are projected onto the stent surface to indicate their areas, and the overlapping regions are measured as the side branch access through these stent cells. The method was evaluated on phantom data sets and the accuracy of the MCUSA and side branch access was found to be 95% and 91%, respectively. The usability of this approach for clinical research was proved on 12 in vivo IVOCT pullback runs.
doi_str_mv 10.1016/j.compmedimag.2013.08.007
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1516750097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0895611113001407</els_id><sourcerecordid>1516750097</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-8ca92609b66cda36b0f848a486a2f974b2b711c83f29e0a1d19217bd077889013</originalsourceid><addsrcrecordid>eNqNkl2L1TAQhoMo7nH1L0i886Z1Ju3Jx40gx09Y8EK9Dmma7snZNqlJu7D-elPOKuKNQiADeWcm8z5DyAuEGgH5q1Nt4zRPrveTua4ZYFODrAHEA7JDKVQFQuBDsgOp9hVHxAvyJOcTADAQ-JhcsBYEcMF2ZGneUpOzy3lyYaFxoHnZAuvGkWb_w1ET-hL0jnbJBHukxtqipj6UsyRza7JdR5NonBdvzUhtPLrkgnV0iVO8TmY-ekvndRw7Y29oWkN-Sh4NZszu2f19Sb69f_f18LG6-vzh0-HNVWVbvl8qaY1iHFTHue1NwzsYZCtNK7lhgxJtxzqBaGUzMOXAYI-Koej6Mr2UqrhySV6e684pfl9dXvTk8zaZCS6uWeMeudgDKPFvaasUtihBFak6S22KOSc36DkVEOlOI-iNjz7pP_jojY8GqQufkvv8vs3alfffmb-AFMHhLHDFl1vvks7Wb272Pjm76D76_2rz-q8qdvRhw3Pj7lw-xTWFYrxGnZkG_WVblG1PsAHA8pXmJ4EIvI8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1499141809</pqid></control><display><type>article</type><title>3D assessment of stent cell size and side branch access in intravascular optical coherence tomographic pullback runs</title><source>ScienceDirect Freedom Collection</source><creator>Wang, Ancong ; Eggermont, Jeroen ; Dekker, Niels ; de Koning, Patrick J.H ; Reiber, Johan H.C ; Dijkstra, Jouke</creator><creatorcontrib>Wang, Ancong ; Eggermont, Jeroen ; Dekker, Niels ; de Koning, Patrick J.H ; Reiber, Johan H.C ; Dijkstra, Jouke</creatorcontrib><description>Abstract We present a semi-automatic approach to assess the maximum circular unsupported surface area (MCUSA) of selected stent cells and the side branch access through stent cells in intravascular optical coherence tomography (IVOCT) pullback runs. Such 3D information may influence coronary interventions, stent design, blood flow analysis or prognostic evaluation. First, the stent struts are detected automatically and stent cells are reconstructed with users’ assistance. Using cylinder fitting, a 2D approximation of the stent cell is generated for MCUSA detection and measurement. Next, a stent surface is reconstructed and stent-covered side branches are detected. Both the stent cell contours and side branch lumen contours are projected onto the stent surface to indicate their areas, and the overlapping regions are measured as the side branch access through these stent cells. The method was evaluated on phantom data sets and the accuracy of the MCUSA and side branch access was found to be 95% and 91%, respectively. The usability of this approach for clinical research was proved on 12 in vivo IVOCT pullback runs.</description><identifier>ISSN: 0895-6111</identifier><identifier>EISSN: 1879-0771</identifier><identifier>DOI: 10.1016/j.compmedimag.2013.08.007</identifier><identifier>PMID: 24070672</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>3D stent cell ; Coronary Artery Disease - pathology ; Coronary Artery Disease - surgery ; Equipment Failure Analysis ; Humans ; Image Interpretation, Computer-Assisted - methods ; Imaging, Three-Dimensional - methods ; Internal Medicine ; MCUSA ; Optical coherence tomography ; Other ; Prosthesis Implantation - methods ; Reproducibility of Results ; Sensitivity and Specificity ; Side branch access ; Stent surface reconstruction ; Surgery, Computer-Assisted - methods ; Tomography, Optical Coherence - methods ; Treatment Outcome</subject><ispartof>Computerized medical imaging and graphics, 2014-03, Vol.38 (2), p.113-122</ispartof><rights>Elsevier Ltd</rights><rights>2013 Elsevier Ltd</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-8ca92609b66cda36b0f848a486a2f974b2b711c83f29e0a1d19217bd077889013</citedby><cites>FETCH-LOGICAL-c465t-8ca92609b66cda36b0f848a486a2f974b2b711c83f29e0a1d19217bd077889013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24070672$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Ancong</creatorcontrib><creatorcontrib>Eggermont, Jeroen</creatorcontrib><creatorcontrib>Dekker, Niels</creatorcontrib><creatorcontrib>de Koning, Patrick J.H</creatorcontrib><creatorcontrib>Reiber, Johan H.C</creatorcontrib><creatorcontrib>Dijkstra, Jouke</creatorcontrib><title>3D assessment of stent cell size and side branch access in intravascular optical coherence tomographic pullback runs</title><title>Computerized medical imaging and graphics</title><addtitle>Comput Med Imaging Graph</addtitle><description>Abstract We present a semi-automatic approach to assess the maximum circular unsupported surface area (MCUSA) of selected stent cells and the side branch access through stent cells in intravascular optical coherence tomography (IVOCT) pullback runs. Such 3D information may influence coronary interventions, stent design, blood flow analysis or prognostic evaluation. First, the stent struts are detected automatically and stent cells are reconstructed with users’ assistance. Using cylinder fitting, a 2D approximation of the stent cell is generated for MCUSA detection and measurement. Next, a stent surface is reconstructed and stent-covered side branches are detected. Both the stent cell contours and side branch lumen contours are projected onto the stent surface to indicate their areas, and the overlapping regions are measured as the side branch access through these stent cells. The method was evaluated on phantom data sets and the accuracy of the MCUSA and side branch access was found to be 95% and 91%, respectively. The usability of this approach for clinical research was proved on 12 in vivo IVOCT pullback runs.</description><subject>3D stent cell</subject><subject>Coronary Artery Disease - pathology</subject><subject>Coronary Artery Disease - surgery</subject><subject>Equipment Failure Analysis</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Internal Medicine</subject><subject>MCUSA</subject><subject>Optical coherence tomography</subject><subject>Other</subject><subject>Prosthesis Implantation - methods</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Side branch access</subject><subject>Stent surface reconstruction</subject><subject>Surgery, Computer-Assisted - methods</subject><subject>Tomography, Optical Coherence - methods</subject><subject>Treatment Outcome</subject><issn>0895-6111</issn><issn>1879-0771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkl2L1TAQhoMo7nH1L0i886Z1Ju3Jx40gx09Y8EK9Dmma7snZNqlJu7D-elPOKuKNQiADeWcm8z5DyAuEGgH5q1Nt4zRPrveTua4ZYFODrAHEA7JDKVQFQuBDsgOp9hVHxAvyJOcTADAQ-JhcsBYEcMF2ZGneUpOzy3lyYaFxoHnZAuvGkWb_w1ET-hL0jnbJBHukxtqipj6UsyRza7JdR5NonBdvzUhtPLrkgnV0iVO8TmY-ekvndRw7Y29oWkN-Sh4NZszu2f19Sb69f_f18LG6-vzh0-HNVWVbvl8qaY1iHFTHue1NwzsYZCtNK7lhgxJtxzqBaGUzMOXAYI-Koej6Mr2UqrhySV6e684pfl9dXvTk8zaZCS6uWeMeudgDKPFvaasUtihBFak6S22KOSc36DkVEOlOI-iNjz7pP_jojY8GqQufkvv8vs3alfffmb-AFMHhLHDFl1vvks7Wb272Pjm76D76_2rz-q8qdvRhw3Pj7lw-xTWFYrxGnZkG_WVblG1PsAHA8pXmJ4EIvI8</recordid><startdate>20140301</startdate><enddate>20140301</enddate><creator>Wang, Ancong</creator><creator>Eggermont, Jeroen</creator><creator>Dekker, Niels</creator><creator>de Koning, Patrick J.H</creator><creator>Reiber, Johan H.C</creator><creator>Dijkstra, Jouke</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20140301</creationdate><title>3D assessment of stent cell size and side branch access in intravascular optical coherence tomographic pullback runs</title><author>Wang, Ancong ; Eggermont, Jeroen ; Dekker, Niels ; de Koning, Patrick J.H ; Reiber, Johan H.C ; Dijkstra, Jouke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-8ca92609b66cda36b0f848a486a2f974b2b711c83f29e0a1d19217bd077889013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>3D stent cell</topic><topic>Coronary Artery Disease - pathology</topic><topic>Coronary Artery Disease - surgery</topic><topic>Equipment Failure Analysis</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Internal Medicine</topic><topic>MCUSA</topic><topic>Optical coherence tomography</topic><topic>Other</topic><topic>Prosthesis Implantation - methods</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Side branch access</topic><topic>Stent surface reconstruction</topic><topic>Surgery, Computer-Assisted - methods</topic><topic>Tomography, Optical Coherence - methods</topic><topic>Treatment Outcome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Ancong</creatorcontrib><creatorcontrib>Eggermont, Jeroen</creatorcontrib><creatorcontrib>Dekker, Niels</creatorcontrib><creatorcontrib>de Koning, Patrick J.H</creatorcontrib><creatorcontrib>Reiber, Johan H.C</creatorcontrib><creatorcontrib>Dijkstra, Jouke</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Computerized medical imaging and graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Ancong</au><au>Eggermont, Jeroen</au><au>Dekker, Niels</au><au>de Koning, Patrick J.H</au><au>Reiber, Johan H.C</au><au>Dijkstra, Jouke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D assessment of stent cell size and side branch access in intravascular optical coherence tomographic pullback runs</atitle><jtitle>Computerized medical imaging and graphics</jtitle><addtitle>Comput Med Imaging Graph</addtitle><date>2014-03-01</date><risdate>2014</risdate><volume>38</volume><issue>2</issue><spage>113</spage><epage>122</epage><pages>113-122</pages><issn>0895-6111</issn><eissn>1879-0771</eissn><abstract>Abstract We present a semi-automatic approach to assess the maximum circular unsupported surface area (MCUSA) of selected stent cells and the side branch access through stent cells in intravascular optical coherence tomography (IVOCT) pullback runs. Such 3D information may influence coronary interventions, stent design, blood flow analysis or prognostic evaluation. First, the stent struts are detected automatically and stent cells are reconstructed with users’ assistance. Using cylinder fitting, a 2D approximation of the stent cell is generated for MCUSA detection and measurement. Next, a stent surface is reconstructed and stent-covered side branches are detected. Both the stent cell contours and side branch lumen contours are projected onto the stent surface to indicate their areas, and the overlapping regions are measured as the side branch access through these stent cells. The method was evaluated on phantom data sets and the accuracy of the MCUSA and side branch access was found to be 95% and 91%, respectively. The usability of this approach for clinical research was proved on 12 in vivo IVOCT pullback runs.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>24070672</pmid><doi>10.1016/j.compmedimag.2013.08.007</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0895-6111
ispartof Computerized medical imaging and graphics, 2014-03, Vol.38 (2), p.113-122
issn 0895-6111
1879-0771
language eng
recordid cdi_proquest_miscellaneous_1516750097
source ScienceDirect Freedom Collection
subjects 3D stent cell
Coronary Artery Disease - pathology
Coronary Artery Disease - surgery
Equipment Failure Analysis
Humans
Image Interpretation, Computer-Assisted - methods
Imaging, Three-Dimensional - methods
Internal Medicine
MCUSA
Optical coherence tomography
Other
Prosthesis Implantation - methods
Reproducibility of Results
Sensitivity and Specificity
Side branch access
Stent surface reconstruction
Surgery, Computer-Assisted - methods
Tomography, Optical Coherence - methods
Treatment Outcome
title 3D assessment of stent cell size and side branch access in intravascular optical coherence tomographic pullback runs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A29%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20assessment%20of%20stent%20cell%20size%20and%20side%20branch%20access%20in%20intravascular%20optical%20coherence%20tomographic%20pullback%20runs&rft.jtitle=Computerized%20medical%20imaging%20and%20graphics&rft.au=Wang,%20Ancong&rft.date=2014-03-01&rft.volume=38&rft.issue=2&rft.spage=113&rft.epage=122&rft.pages=113-122&rft.issn=0895-6111&rft.eissn=1879-0771&rft_id=info:doi/10.1016/j.compmedimag.2013.08.007&rft_dat=%3Cproquest_cross%3E1516750097%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-8ca92609b66cda36b0f848a486a2f974b2b711c83f29e0a1d19217bd077889013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1499141809&rft_id=info:pmid/24070672&rfr_iscdi=true