Loading…

The role of outcrop-to-outcrop fluid flow in off-axis oceanic hydrothermal systems under abyssal sedimentation conditions

It has been proposed that ridge flank hydrothermal circulation by outcrop‐to‐outcrop (lateral) flow may be the dominant mode of oceanic hydrothermal circulation globally. In this model, the upper igneous crust is an aquifer overlain by low permeability sediments, and aquifer‐ocean fluid exchange occ...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Geophysical Research: Solid Earth 2012-05, Vol.117 (B5), p.n/a
Main Authors: Anderson, B. W., Coogan, L. A., Gillis, K. M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a4696-7420abd69732e0aeb25ed9f8581bf928680721e86a6630a96de3e8e1362665db3
cites cdi_FETCH-LOGICAL-a4696-7420abd69732e0aeb25ed9f8581bf928680721e86a6630a96de3e8e1362665db3
container_end_page n/a
container_issue B5
container_start_page
container_title Journal of Geophysical Research: Solid Earth
container_volume 117
creator Anderson, B. W.
Coogan, L. A.
Gillis, K. M.
description It has been proposed that ridge flank hydrothermal circulation by outcrop‐to‐outcrop (lateral) flow may be the dominant mode of oceanic hydrothermal circulation globally. In this model, the upper igneous crust is an aquifer overlain by low permeability sediments, and aquifer‐ocean fluid exchange occurs through basement outcrops. Thermally induced pressure gradients drive fluid laterally from recharge outcrops to discharge outcrops. To test the global applicability of outcrop‐to‐outcrop flow, models of synthetic basement bathymetry representative of crust formed at different spreading rates, pelagic sediment supply and post depositional transport, and sediment hydraulic impedance are used to quantify the time‐varying distribution of sediment and basement outcrops globally. Results suggest that basement outcrops may be 40–50% closer together than previously estimated. The modeled sediment and outcrop results are coupled with a two‐dimensional model of outcrop‐to‐outcrop fluid flow and heat exchange in a vertically isothermal crustal aquifer to predict the spatial distributions of seafloor heat flow within the simulation region under this mode of hydrothermal circulation. It is found that both the time‐varying average and standard deviation of modeled seafloor heat flow required by outcrop‐to‐outcrop flow simultaneously fit the global heat flow data if the average aquifer permeability decreases from ∼10−9 m2 to ∼10−11 m2 over the duration of the global heat flow deficit (to ∼65 Myr). This permeability range is consistent with other estimates of upper crustal permeability on comparable spatial scales, and supports the proposition that outcrop‐to‐outcrop fluid flow may be the dominant mode of off‐axis hydrothermal circulation globally. Key Points Global distribution of seafloor outcrops is modeled Outcrop‐to‐outcrop flow model is tested against global heat flow data
doi_str_mv 10.1029/2011JB009052
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1516758678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1516758678</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4696-7420abd69732e0aeb25ed9f8581bf928680721e86a6630a96de3e8e1362665db3</originalsourceid><addsrcrecordid>eNp9kV-L1DAUxYsoOKz75gcIiOCD0fxpbtJHd1lHl0VlGfUxpO0tk7VtxqRlt9_elBkW8cE8JIfwO-de7i2Kl5y940xU7wXj_PqCsYop8aTYCK6ACsHE02LDeGkoE0I_L85TumP5lApKxjfFstsjiaFHEjoS5qmJ4UCnQE-SdP3s23yHe-LHzHTUPfhEQoNu9A3ZL20M0x7j4HqSljThkMg8thiJq5eU1l9s_YDj5CYfRtKEsfWrSi-KZ53rE56f3rPi-8er3eUnevN1-_nyww11JVRAdSmYq1uotBTIHNZCYVt1Rhled5UwYJgWHA04AMlcBS1KNMglCADV1vKseHPMPcTwe8Y02cGnBvvejRjmZLnioJUBbTL66h_0LsxxzN1ZzjgonYut1NsjlQeUUsTOHqIfXFwyZNdV2L9XkfHXp1CXGtd30Y2NT48eAZLLkkHm5JG79z0u_82019vbC665WV306PJ59g-PLhd_WdBSK_vzy9aqHav4j9tvVss_6_emYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1016576808</pqid></control><display><type>article</type><title>The role of outcrop-to-outcrop fluid flow in off-axis oceanic hydrothermal systems under abyssal sedimentation conditions</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><source>Wiley-Blackwell AGU Digital Archive</source><source>Alma/SFX Local Collection</source><creator>Anderson, B. W. ; Coogan, L. A. ; Gillis, K. M.</creator><creatorcontrib>Anderson, B. W. ; Coogan, L. A. ; Gillis, K. M.</creatorcontrib><description>It has been proposed that ridge flank hydrothermal circulation by outcrop‐to‐outcrop (lateral) flow may be the dominant mode of oceanic hydrothermal circulation globally. In this model, the upper igneous crust is an aquifer overlain by low permeability sediments, and aquifer‐ocean fluid exchange occurs through basement outcrops. Thermally induced pressure gradients drive fluid laterally from recharge outcrops to discharge outcrops. To test the global applicability of outcrop‐to‐outcrop flow, models of synthetic basement bathymetry representative of crust formed at different spreading rates, pelagic sediment supply and post depositional transport, and sediment hydraulic impedance are used to quantify the time‐varying distribution of sediment and basement outcrops globally. Results suggest that basement outcrops may be 40–50% closer together than previously estimated. The modeled sediment and outcrop results are coupled with a two‐dimensional model of outcrop‐to‐outcrop fluid flow and heat exchange in a vertically isothermal crustal aquifer to predict the spatial distributions of seafloor heat flow within the simulation region under this mode of hydrothermal circulation. It is found that both the time‐varying average and standard deviation of modeled seafloor heat flow required by outcrop‐to‐outcrop flow simultaneously fit the global heat flow data if the average aquifer permeability decreases from ∼10−9 m2 to ∼10−11 m2 over the duration of the global heat flow deficit (to ∼65 Myr). This permeability range is consistent with other estimates of upper crustal permeability on comparable spatial scales, and supports the proposition that outcrop‐to‐outcrop fluid flow may be the dominant mode of off‐axis hydrothermal circulation globally. Key Points Global distribution of seafloor outcrops is modeled Outcrop‐to‐outcrop flow model is tested against global heat flow data</description><identifier>ISSN: 0148-0227</identifier><identifier>ISSN: 2169-9313</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-9356</identifier><identifier>DOI: 10.1029/2011JB009052</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Aquifers ; Bathymetry ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Fluid flow ; Geophysics ; Heat exchange ; Heat flow ; hydrology ; hydrothermal processes ; Marine ; Marine geology ; numerical modeling ; ocean crustal evolution ; Ocean floor ; Permeability ; Sediments ; Spatial distribution</subject><ispartof>Journal of Geophysical Research: Solid Earth, 2012-05, Vol.117 (B5), p.n/a</ispartof><rights>Copyright 2012 by the American Geophysical Union</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4696-7420abd69732e0aeb25ed9f8581bf928680721e86a6630a96de3e8e1362665db3</citedby><cites>FETCH-LOGICAL-a4696-7420abd69732e0aeb25ed9f8581bf928680721e86a6630a96de3e8e1362665db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2011JB009052$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2011JB009052$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11514,27924,27925,46468,46892</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26313406$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Anderson, B. W.</creatorcontrib><creatorcontrib>Coogan, L. A.</creatorcontrib><creatorcontrib>Gillis, K. M.</creatorcontrib><title>The role of outcrop-to-outcrop fluid flow in off-axis oceanic hydrothermal systems under abyssal sedimentation conditions</title><title>Journal of Geophysical Research: Solid Earth</title><addtitle>J. Geophys. Res</addtitle><description>It has been proposed that ridge flank hydrothermal circulation by outcrop‐to‐outcrop (lateral) flow may be the dominant mode of oceanic hydrothermal circulation globally. In this model, the upper igneous crust is an aquifer overlain by low permeability sediments, and aquifer‐ocean fluid exchange occurs through basement outcrops. Thermally induced pressure gradients drive fluid laterally from recharge outcrops to discharge outcrops. To test the global applicability of outcrop‐to‐outcrop flow, models of synthetic basement bathymetry representative of crust formed at different spreading rates, pelagic sediment supply and post depositional transport, and sediment hydraulic impedance are used to quantify the time‐varying distribution of sediment and basement outcrops globally. Results suggest that basement outcrops may be 40–50% closer together than previously estimated. The modeled sediment and outcrop results are coupled with a two‐dimensional model of outcrop‐to‐outcrop fluid flow and heat exchange in a vertically isothermal crustal aquifer to predict the spatial distributions of seafloor heat flow within the simulation region under this mode of hydrothermal circulation. It is found that both the time‐varying average and standard deviation of modeled seafloor heat flow required by outcrop‐to‐outcrop flow simultaneously fit the global heat flow data if the average aquifer permeability decreases from ∼10−9 m2 to ∼10−11 m2 over the duration of the global heat flow deficit (to ∼65 Myr). This permeability range is consistent with other estimates of upper crustal permeability on comparable spatial scales, and supports the proposition that outcrop‐to‐outcrop fluid flow may be the dominant mode of off‐axis hydrothermal circulation globally. Key Points Global distribution of seafloor outcrops is modeled Outcrop‐to‐outcrop flow model is tested against global heat flow data</description><subject>Aquifers</subject><subject>Bathymetry</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Fluid flow</subject><subject>Geophysics</subject><subject>Heat exchange</subject><subject>Heat flow</subject><subject>hydrology</subject><subject>hydrothermal processes</subject><subject>Marine</subject><subject>Marine geology</subject><subject>numerical modeling</subject><subject>ocean crustal evolution</subject><subject>Ocean floor</subject><subject>Permeability</subject><subject>Sediments</subject><subject>Spatial distribution</subject><issn>0148-0227</issn><issn>2169-9313</issn><issn>2156-2202</issn><issn>2169-9356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kV-L1DAUxYsoOKz75gcIiOCD0fxpbtJHd1lHl0VlGfUxpO0tk7VtxqRlt9_elBkW8cE8JIfwO-de7i2Kl5y940xU7wXj_PqCsYop8aTYCK6ACsHE02LDeGkoE0I_L85TumP5lApKxjfFstsjiaFHEjoS5qmJ4UCnQE-SdP3s23yHe-LHzHTUPfhEQoNu9A3ZL20M0x7j4HqSljThkMg8thiJq5eU1l9s_YDj5CYfRtKEsfWrSi-KZ53rE56f3rPi-8er3eUnevN1-_nyww11JVRAdSmYq1uotBTIHNZCYVt1Rhled5UwYJgWHA04AMlcBS1KNMglCADV1vKseHPMPcTwe8Y02cGnBvvejRjmZLnioJUBbTL66h_0LsxxzN1ZzjgonYut1NsjlQeUUsTOHqIfXFwyZNdV2L9XkfHXp1CXGtd30Y2NT48eAZLLkkHm5JG79z0u_82019vbC665WV306PJ59g-PLhd_WdBSK_vzy9aqHav4j9tvVss_6_emYw</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Anderson, B. W.</creator><creator>Coogan, L. A.</creator><creator>Gillis, K. M.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7TN</scope></search><sort><creationdate>201205</creationdate><title>The role of outcrop-to-outcrop fluid flow in off-axis oceanic hydrothermal systems under abyssal sedimentation conditions</title><author>Anderson, B. W. ; Coogan, L. A. ; Gillis, K. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4696-7420abd69732e0aeb25ed9f8581bf928680721e86a6630a96de3e8e1362665db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Aquifers</topic><topic>Bathymetry</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Fluid flow</topic><topic>Geophysics</topic><topic>Heat exchange</topic><topic>Heat flow</topic><topic>hydrology</topic><topic>hydrothermal processes</topic><topic>Marine</topic><topic>Marine geology</topic><topic>numerical modeling</topic><topic>ocean crustal evolution</topic><topic>Ocean floor</topic><topic>Permeability</topic><topic>Sediments</topic><topic>Spatial distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, B. W.</creatorcontrib><creatorcontrib>Coogan, L. A.</creatorcontrib><creatorcontrib>Gillis, K. M.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><jtitle>Journal of Geophysical Research: Solid Earth</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anderson, B. W.</au><au>Coogan, L. A.</au><au>Gillis, K. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of outcrop-to-outcrop fluid flow in off-axis oceanic hydrothermal systems under abyssal sedimentation conditions</atitle><jtitle>Journal of Geophysical Research: Solid Earth</jtitle><addtitle>J. Geophys. Res</addtitle><date>2012-05</date><risdate>2012</risdate><volume>117</volume><issue>B5</issue><epage>n/a</epage><issn>0148-0227</issn><issn>2169-9313</issn><eissn>2156-2202</eissn><eissn>2169-9356</eissn><abstract>It has been proposed that ridge flank hydrothermal circulation by outcrop‐to‐outcrop (lateral) flow may be the dominant mode of oceanic hydrothermal circulation globally. In this model, the upper igneous crust is an aquifer overlain by low permeability sediments, and aquifer‐ocean fluid exchange occurs through basement outcrops. Thermally induced pressure gradients drive fluid laterally from recharge outcrops to discharge outcrops. To test the global applicability of outcrop‐to‐outcrop flow, models of synthetic basement bathymetry representative of crust formed at different spreading rates, pelagic sediment supply and post depositional transport, and sediment hydraulic impedance are used to quantify the time‐varying distribution of sediment and basement outcrops globally. Results suggest that basement outcrops may be 40–50% closer together than previously estimated. The modeled sediment and outcrop results are coupled with a two‐dimensional model of outcrop‐to‐outcrop fluid flow and heat exchange in a vertically isothermal crustal aquifer to predict the spatial distributions of seafloor heat flow within the simulation region under this mode of hydrothermal circulation. It is found that both the time‐varying average and standard deviation of modeled seafloor heat flow required by outcrop‐to‐outcrop flow simultaneously fit the global heat flow data if the average aquifer permeability decreases from ∼10−9 m2 to ∼10−11 m2 over the duration of the global heat flow deficit (to ∼65 Myr). This permeability range is consistent with other estimates of upper crustal permeability on comparable spatial scales, and supports the proposition that outcrop‐to‐outcrop fluid flow may be the dominant mode of off‐axis hydrothermal circulation globally. Key Points Global distribution of seafloor outcrops is modeled Outcrop‐to‐outcrop flow model is tested against global heat flow data</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2011JB009052</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research: Solid Earth, 2012-05, Vol.117 (B5), p.n/a
issn 0148-0227
2169-9313
2156-2202
2169-9356
language eng
recordid cdi_proquest_miscellaneous_1516758678
source Wiley-Blackwell Read & Publish Collection; Wiley-Blackwell AGU Digital Archive; Alma/SFX Local Collection
subjects Aquifers
Bathymetry
Earth sciences
Earth, ocean, space
Exact sciences and technology
Fluid flow
Geophysics
Heat exchange
Heat flow
hydrology
hydrothermal processes
Marine
Marine geology
numerical modeling
ocean crustal evolution
Ocean floor
Permeability
Sediments
Spatial distribution
title The role of outcrop-to-outcrop fluid flow in off-axis oceanic hydrothermal systems under abyssal sedimentation conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A14%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20outcrop-to-outcrop%20fluid%20flow%20in%20off-axis%20oceanic%20hydrothermal%20systems%20under%20abyssal%20sedimentation%20conditions&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Solid%20Earth&rft.au=Anderson,%20B.%20W.&rft.date=2012-05&rft.volume=117&rft.issue=B5&rft.epage=n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2011JB009052&rft_dat=%3Cproquest_cross%3E1516758678%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a4696-7420abd69732e0aeb25ed9f8581bf928680721e86a6630a96de3e8e1362665db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1016576808&rft_id=info:pmid/&rfr_iscdi=true