Loading…

Modular syntheses of H₄octapa and H₂dedpa, and yttrium coordination chemistry relevant to ⁸⁶Y/⁹⁰Y radiopharmaceuticals

The ligands H2dedpa, H4octapa, p-SCN-Bn-H2dedpa, and p-SCN-Bn-H4octapa were synthesized using a new protection chemistry approach, with labile tert-butyl esters replacing the previously used methyl esters as protecting groups for picolinic acid moieties. Additionally, the ligands H2dedpa and p-SCN-B...

Full description

Saved in:
Bibliographic Details
Published in:Dalton transactions : an international journal of inorganic chemistry 2014-05, Vol.43 (19), p.7176-7190
Main Authors: Price, Eric W, Cawthray, Jacqueline F, Adam, Michael J, Orvig, Chris
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The ligands H2dedpa, H4octapa, p-SCN-Bn-H2dedpa, and p-SCN-Bn-H4octapa were synthesized using a new protection chemistry approach, with labile tert-butyl esters replacing the previously used methyl esters as protecting groups for picolinic acid moieties. Additionally, the ligands H2dedpa and p-SCN-Bn-H2dedpa were synthesized using nosyl protection chemistry for the first time. The use of tert-butyl esters allows for deprotection at room temperature in trifluoroacetic acid (TFA), which compares favorably to the harsh conditions of refluxing HCl (6 M) or LiOH that were previously required for methyl ester cleavage. H4octapa has recently been shown to be a very promising (111)In and (177)Lu ligand for radiopharmaceutical applications; therefore, coordination chemistry studies with Y(3+) are described to assess its potential for use with (86)Y/(90)Y. The solution chemistry of H4octapa with Y(3+) is shown to be suitable via solution NMR studies of the [Y(octapa)](-) complex and density functional theory (DFT) calculations of the predicted structure, suggesting properties similar to those of the analogous In(3+) and Lu(3+) complexes. The molecular electrostatic potential (MEP) was mapped onto the molecular surface of the DFT-calculated coordination structures, suggesting very similar and even charge distributions between both the Lu(3+) and Y(3+) complexes of octapa(4-), and coordinate structures between 8 (ligand only) and 9 (ligand and one H2O). Potentiometric titrations determined H4octapa to have a formation constant (log K(ML)) with Y(3+) of 18.3 ± 0.1, revealing high thermodynamic stability. This preliminary work suggests that H4octapa may be a competent ligand for future (86)Y/(90)Y radiopharmaceutical applications.
ISSN:1477-9234
DOI:10.1039/c4dt00239c