Loading…
The LIM domain protein FHL1C interacts with tight junction protein ZO-1 contributing to the epithelial–mesenchymal transition (EMT) of a breast adenocarcinoma cell line
FHL1C is a LIM domain protein that has been implied in transcription regulation through interacting with other proteins, such as RBP-J, the critical transcription factor of the Notch signaling pathway. The LIM domain is a protein–protein interaction interface, suggesting that FHL1C could bind other...
Saved in:
Published in: | Gene 2014-06, Vol.542 (2), p.182-189 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | FHL1C is a LIM domain protein that has been implied in transcription regulation through interacting with other proteins, such as RBP-J, the critical transcription factor of the Notch signaling pathway. The LIM domain is a protein–protein interaction interface, suggesting that FHL1C could bind other proteins to enable its functions. In order to explore the interacting proteins with FHL1C, in this study we screened FHL1C-interacting proteins by using immunoprecipitation and mass spectrometric analysis. ZO-1, a member of the Zonula occludens proteins that constitute tight junctions, was sorted out as one candidate by using these techniques. Furthermore, we confirmed the interaction between FHL1C and ZO-1 in cells by using the mammalian two-hybrid assay and the co-immunoprecipitation assay, and verified that ZO-1 could interact with FHL1C through the PDZ domains of ZO-1. Moreover, with immunofluorescence staining, we found that FHL1C could induce ZO-1 translocating into nucleus. With a breast adenocarcinoma cell line MCF7, we showed that the interaction between FHL1C and ZO-1 could contribute to the epithelial–mesenchymal transition (EMT). Taken together, our study might provide new insight into the function of FHL1C on the regulation of EMT in cancer cells. |
---|---|
ISSN: | 0378-1119 1879-0038 |
DOI: | 10.1016/j.gene.2014.03.036 |