Loading…

Probing the effect of surface chemistry on the electrical properties of ultrathin gold nanowire sensors

Ultrathin metal nanowires are ultimately analytical tools that can be used to survey the interfacial properties of the functional groups of organic molecules immobilized on nanoelectrodes. The high ratio of surface to bulk atoms makes such ultrathin nanowires extremely electrically sensitive to adso...

Full description

Saved in:
Bibliographic Details
Published in:Nanoscale 2014-05, Vol.6 (1), p.5146-5155
Main Authors: Kisner, Alexandre, Heggen, Marc, Mayer, Dirk, Simon, Ulrich, Offenhäusser, Andreas, Mourzina, Yulia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c467t-8c486fe736960382c62586d2dc02cd28336066d015cd59d5d25f8154b88f1b423
cites cdi_FETCH-LOGICAL-c467t-8c486fe736960382c62586d2dc02cd28336066d015cd59d5d25f8154b88f1b423
container_end_page 5155
container_issue 1
container_start_page 5146
container_title Nanoscale
container_volume 6
creator Kisner, Alexandre
Heggen, Marc
Mayer, Dirk
Simon, Ulrich
Offenhäusser, Andreas
Mourzina, Yulia
description Ultrathin metal nanowires are ultimately analytical tools that can be used to survey the interfacial properties of the functional groups of organic molecules immobilized on nanoelectrodes. The high ratio of surface to bulk atoms makes such ultrathin nanowires extremely electrically sensitive to adsorbates and their charge and/or polarity, although little is known about the nature of surface chemistry interactions on metallic ultrathin nanowires. Here we report the first studies about the effect of functional groups of short-chain alkanethiol molecules on the electrical resistance of ultrathin gold nanowires. We fabricated ultrathin nanowire electrical sensors based on chemiresistors using conventional microfabrication techniques, so that the contact areas were passivated to leave only the surface of the nanowires exposed to the environment. By immobilizing alkanethiol molecules with head groups such as -CH 3 , -NH 2 and -COOH on gold nanowires, we examined how the charge proximity due to protonation/deprotonation of the functional groups affects the resistance of the sensors. Electrical measurements in air and in water only indicate that beyond the gold-sulfur moiety interactions, the interfacial charge due to the acid-base chemistry of the functional groups of the molecules has a significant impact on the electrical resistance of the wires. Our data demonstrate that the degree of dissociation of the corresponding functional groups plays a major role in enhancing the surface-sensitive resistivity of the nanowires. These results stress the importance of recognizing the effect of protonation/deprotonation of the surface chemistry on the resulting electrical sensitivity of ultrathin metal nanowires and the applicability of such sensors for studying interfacial properties using electrodes of comparable size to the electrochemical double layer. Ultrathin metal nanowires sensors demonstrate a huge electrical sensitivity to the interfacial dipole due to the acid-base chemistry of adsorbed molecules.
doi_str_mv 10.1039/c3nr05927h
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1518816876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1518816876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-8c486fe736960382c62586d2dc02cd28336066d015cd59d5d25f8154b88f1b423</originalsourceid><addsrcrecordid>eNqN0U1Lw0AQBuBFFFurF-_KehMhut_ZHKWoFYqK6Dkk-9FE0mzcTZD-e1NT6009zcI8O8zwAnCM0SVGNLlStPaIJyQudsCYIIYiSmOyu30LNgIHIbwhJBIq6D4YEcZlIogYg8WTd3lZL2BbGGisNaqFzsLQeZspA1VhlmVo_Qq6eiBVL3ypsgo23jXGt6UJ6x9d1fqsLcoaLlylYZ3V7qP0BgZTB-fDIdizWRXM0aZOwOvtzct0Fs0f7-6n1_NIMRG3kVRMCmtiKhKBqCRKEC6FJlohojSR_TFICI0wV5onmmvCrcSc5VJanDNCJ-B8mNtv996Z0Kb9_spUVVYb14UUxzGiFMec_U05w4yyRKJ_UCwlFjIWPb0YqPIuBG9s2vhymflVilG6jiud0ofnr7hmPT7dzO3ypdFb-p1PD84G4IPadn_yThtte3Pym6Gf_D2kxA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1518816876</pqid></control><display><type>article</type><title>Probing the effect of surface chemistry on the electrical properties of ultrathin gold nanowire sensors</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Kisner, Alexandre ; Heggen, Marc ; Mayer, Dirk ; Simon, Ulrich ; Offenhäusser, Andreas ; Mourzina, Yulia</creator><creatorcontrib>Kisner, Alexandre ; Heggen, Marc ; Mayer, Dirk ; Simon, Ulrich ; Offenhäusser, Andreas ; Mourzina, Yulia</creatorcontrib><description>Ultrathin metal nanowires are ultimately analytical tools that can be used to survey the interfacial properties of the functional groups of organic molecules immobilized on nanoelectrodes. The high ratio of surface to bulk atoms makes such ultrathin nanowires extremely electrically sensitive to adsorbates and their charge and/or polarity, although little is known about the nature of surface chemistry interactions on metallic ultrathin nanowires. Here we report the first studies about the effect of functional groups of short-chain alkanethiol molecules on the electrical resistance of ultrathin gold nanowires. We fabricated ultrathin nanowire electrical sensors based on chemiresistors using conventional microfabrication techniques, so that the contact areas were passivated to leave only the surface of the nanowires exposed to the environment. By immobilizing alkanethiol molecules with head groups such as -CH 3 , -NH 2 and -COOH on gold nanowires, we examined how the charge proximity due to protonation/deprotonation of the functional groups affects the resistance of the sensors. Electrical measurements in air and in water only indicate that beyond the gold-sulfur moiety interactions, the interfacial charge due to the acid-base chemistry of the functional groups of the molecules has a significant impact on the electrical resistance of the wires. Our data demonstrate that the degree of dissociation of the corresponding functional groups plays a major role in enhancing the surface-sensitive resistivity of the nanowires. These results stress the importance of recognizing the effect of protonation/deprotonation of the surface chemistry on the resulting electrical sensitivity of ultrathin metal nanowires and the applicability of such sensors for studying interfacial properties using electrodes of comparable size to the electrochemical double layer. Ultrathin metal nanowires sensors demonstrate a huge electrical sensitivity to the interfacial dipole due to the acid-base chemistry of adsorbed molecules.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c3nr05927h</identifier><identifier>PMID: 24589626</identifier><language>eng</language><publisher>England</publisher><subject>Charge ; Charge (electric) ; Electric charge ; Functional groups ; Gold ; Nanostructure ; Nanowires ; Protonation ; Sensors ; Surface chemistry</subject><ispartof>Nanoscale, 2014-05, Vol.6 (1), p.5146-5155</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-8c486fe736960382c62586d2dc02cd28336066d015cd59d5d25f8154b88f1b423</citedby><cites>FETCH-LOGICAL-c467t-8c486fe736960382c62586d2dc02cd28336066d015cd59d5d25f8154b88f1b423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24589626$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kisner, Alexandre</creatorcontrib><creatorcontrib>Heggen, Marc</creatorcontrib><creatorcontrib>Mayer, Dirk</creatorcontrib><creatorcontrib>Simon, Ulrich</creatorcontrib><creatorcontrib>Offenhäusser, Andreas</creatorcontrib><creatorcontrib>Mourzina, Yulia</creatorcontrib><title>Probing the effect of surface chemistry on the electrical properties of ultrathin gold nanowire sensors</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Ultrathin metal nanowires are ultimately analytical tools that can be used to survey the interfacial properties of the functional groups of organic molecules immobilized on nanoelectrodes. The high ratio of surface to bulk atoms makes such ultrathin nanowires extremely electrically sensitive to adsorbates and their charge and/or polarity, although little is known about the nature of surface chemistry interactions on metallic ultrathin nanowires. Here we report the first studies about the effect of functional groups of short-chain alkanethiol molecules on the electrical resistance of ultrathin gold nanowires. We fabricated ultrathin nanowire electrical sensors based on chemiresistors using conventional microfabrication techniques, so that the contact areas were passivated to leave only the surface of the nanowires exposed to the environment. By immobilizing alkanethiol molecules with head groups such as -CH 3 , -NH 2 and -COOH on gold nanowires, we examined how the charge proximity due to protonation/deprotonation of the functional groups affects the resistance of the sensors. Electrical measurements in air and in water only indicate that beyond the gold-sulfur moiety interactions, the interfacial charge due to the acid-base chemistry of the functional groups of the molecules has a significant impact on the electrical resistance of the wires. Our data demonstrate that the degree of dissociation of the corresponding functional groups plays a major role in enhancing the surface-sensitive resistivity of the nanowires. These results stress the importance of recognizing the effect of protonation/deprotonation of the surface chemistry on the resulting electrical sensitivity of ultrathin metal nanowires and the applicability of such sensors for studying interfacial properties using electrodes of comparable size to the electrochemical double layer. Ultrathin metal nanowires sensors demonstrate a huge electrical sensitivity to the interfacial dipole due to the acid-base chemistry of adsorbed molecules.</description><subject>Charge</subject><subject>Charge (electric)</subject><subject>Electric charge</subject><subject>Functional groups</subject><subject>Gold</subject><subject>Nanostructure</subject><subject>Nanowires</subject><subject>Protonation</subject><subject>Sensors</subject><subject>Surface chemistry</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqN0U1Lw0AQBuBFFFurF-_KehMhut_ZHKWoFYqK6Dkk-9FE0mzcTZD-e1NT6009zcI8O8zwAnCM0SVGNLlStPaIJyQudsCYIIYiSmOyu30LNgIHIbwhJBIq6D4YEcZlIogYg8WTd3lZL2BbGGisNaqFzsLQeZspA1VhlmVo_Qq6eiBVL3ypsgo23jXGt6UJ6x9d1fqsLcoaLlylYZ3V7qP0BgZTB-fDIdizWRXM0aZOwOvtzct0Fs0f7-6n1_NIMRG3kVRMCmtiKhKBqCRKEC6FJlohojSR_TFICI0wV5onmmvCrcSc5VJanDNCJ-B8mNtv996Z0Kb9_spUVVYb14UUxzGiFMec_U05w4yyRKJ_UCwlFjIWPb0YqPIuBG9s2vhymflVilG6jiud0ofnr7hmPT7dzO3ypdFb-p1PD84G4IPadn_yThtte3Pym6Gf_D2kxA</recordid><startdate>20140521</startdate><enddate>20140521</enddate><creator>Kisner, Alexandre</creator><creator>Heggen, Marc</creator><creator>Mayer, Dirk</creator><creator>Simon, Ulrich</creator><creator>Offenhäusser, Andreas</creator><creator>Mourzina, Yulia</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140521</creationdate><title>Probing the effect of surface chemistry on the electrical properties of ultrathin gold nanowire sensors</title><author>Kisner, Alexandre ; Heggen, Marc ; Mayer, Dirk ; Simon, Ulrich ; Offenhäusser, Andreas ; Mourzina, Yulia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-8c486fe736960382c62586d2dc02cd28336066d015cd59d5d25f8154b88f1b423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Charge</topic><topic>Charge (electric)</topic><topic>Electric charge</topic><topic>Functional groups</topic><topic>Gold</topic><topic>Nanostructure</topic><topic>Nanowires</topic><topic>Protonation</topic><topic>Sensors</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kisner, Alexandre</creatorcontrib><creatorcontrib>Heggen, Marc</creatorcontrib><creatorcontrib>Mayer, Dirk</creatorcontrib><creatorcontrib>Simon, Ulrich</creatorcontrib><creatorcontrib>Offenhäusser, Andreas</creatorcontrib><creatorcontrib>Mourzina, Yulia</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kisner, Alexandre</au><au>Heggen, Marc</au><au>Mayer, Dirk</au><au>Simon, Ulrich</au><au>Offenhäusser, Andreas</au><au>Mourzina, Yulia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing the effect of surface chemistry on the electrical properties of ultrathin gold nanowire sensors</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2014-05-21</date><risdate>2014</risdate><volume>6</volume><issue>1</issue><spage>5146</spage><epage>5155</epage><pages>5146-5155</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Ultrathin metal nanowires are ultimately analytical tools that can be used to survey the interfacial properties of the functional groups of organic molecules immobilized on nanoelectrodes. The high ratio of surface to bulk atoms makes such ultrathin nanowires extremely electrically sensitive to adsorbates and their charge and/or polarity, although little is known about the nature of surface chemistry interactions on metallic ultrathin nanowires. Here we report the first studies about the effect of functional groups of short-chain alkanethiol molecules on the electrical resistance of ultrathin gold nanowires. We fabricated ultrathin nanowire electrical sensors based on chemiresistors using conventional microfabrication techniques, so that the contact areas were passivated to leave only the surface of the nanowires exposed to the environment. By immobilizing alkanethiol molecules with head groups such as -CH 3 , -NH 2 and -COOH on gold nanowires, we examined how the charge proximity due to protonation/deprotonation of the functional groups affects the resistance of the sensors. Electrical measurements in air and in water only indicate that beyond the gold-sulfur moiety interactions, the interfacial charge due to the acid-base chemistry of the functional groups of the molecules has a significant impact on the electrical resistance of the wires. Our data demonstrate that the degree of dissociation of the corresponding functional groups plays a major role in enhancing the surface-sensitive resistivity of the nanowires. These results stress the importance of recognizing the effect of protonation/deprotonation of the surface chemistry on the resulting electrical sensitivity of ultrathin metal nanowires and the applicability of such sensors for studying interfacial properties using electrodes of comparable size to the electrochemical double layer. Ultrathin metal nanowires sensors demonstrate a huge electrical sensitivity to the interfacial dipole due to the acid-base chemistry of adsorbed molecules.</abstract><cop>England</cop><pmid>24589626</pmid><doi>10.1039/c3nr05927h</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2014-05, Vol.6 (1), p.5146-5155
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_miscellaneous_1518816876
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Charge
Charge (electric)
Electric charge
Functional groups
Gold
Nanostructure
Nanowires
Protonation
Sensors
Surface chemistry
title Probing the effect of surface chemistry on the electrical properties of ultrathin gold nanowire sensors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A12%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20the%20effect%20of%20surface%20chemistry%20on%20the%20electrical%20properties%20of%20ultrathin%20gold%20nanowire%20sensors&rft.jtitle=Nanoscale&rft.au=Kisner,%20Alexandre&rft.date=2014-05-21&rft.volume=6&rft.issue=1&rft.spage=5146&rft.epage=5155&rft.pages=5146-5155&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c3nr05927h&rft_dat=%3Cproquest_pubme%3E1518816876%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c467t-8c486fe736960382c62586d2dc02cd28336066d015cd59d5d25f8154b88f1b423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1518816876&rft_id=info:pmid/24589626&rfr_iscdi=true