Loading…

Ruin probabilities for risk processes with non-stationary arrivals and subexponential claims

In this paper, we obtain the finite-horizon and infinite-horizon ruin probability asymptotics for risk processes with claims of subexponential tails for non-stationary arrival processes that satisfy a large deviation principle. As a result, the arrival process can be dependent, non-stationary and no...

Full description

Saved in:
Bibliographic Details
Published in:Insurance, mathematics & economics mathematics & economics, 2013-11, Vol.53 (3), p.544-550
Main Author: Zhu, Lingjiong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c443t-25a2a39747f43ca77392310535ca5f5f01213a1d261ef55871d785a9c75d35913
cites cdi_FETCH-LOGICAL-c443t-25a2a39747f43ca77392310535ca5f5f01213a1d261ef55871d785a9c75d35913
container_end_page 550
container_issue 3
container_start_page 544
container_title Insurance, mathematics & economics
container_volume 53
creator Zhu, Lingjiong
description In this paper, we obtain the finite-horizon and infinite-horizon ruin probability asymptotics for risk processes with claims of subexponential tails for non-stationary arrival processes that satisfy a large deviation principle. As a result, the arrival process can be dependent, non-stationary and non-renewal. We give three examples of non-stationary and non-renewal point processes: Hawkes process, Cox process with shot noise intensity and self-correcting point process. We also show some aggregate claims results for these three examples. •Asymptotic ruin probabilities for risk processes with subexponential claims.•Some aggregate claims asymptotics are also studied.•Arrival process can be non-stationary and non-renewal.•The key assumption is arrival process satisfies a large deviation principle.•We apply our results to three examples of arrival processes.
doi_str_mv 10.1016/j.insmatheco.2013.08.008
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1519504354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167668713001194</els_id><sourcerecordid>1519504354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-25a2a39747f43ca77392310535ca5f5f01213a1d261ef55871d785a9c75d35913</originalsourceid><addsrcrecordid>eNqFkFFrFDEUhYMouFb_Q6AvvsyYO5lMMo-1WBUKhdK-CSGbydC7ziZrbqbVf2-WLRR88enC4TuHcw9jHEQLAoZPuxYj7V15CD61nQDZCtMKYV6xDRgtGzWq8TXbVFQ3w2D0W_aOaCeEgHHQG_bjdsXIDzlt3RYXLBiIzynzjPTzKPtAVKUnLA88pthQcQVTdPkPdznjo1uIuzhxWrfh9yHFEAu6hfvF4Z7eszdzBcKH53vG7q--3F1-a65vvn6_vLhufN_L0nTKdU6OutdzL73TWo6dBKGk8k7NahbQgXQwdQOEWSmjYdJGudFrNUk1gjxjH0-5tfCvNVCxeyQflsXFkFayoGBUopeqr-j5P-gurTnWdhb6oZdmEEpXypwonxNRDrM9ZNzXpy0Ie5zd7uzL7PY4uxXG1tmr9fPJGurDjxiyJY8h-jBhDr7YKeH_Q_4CnPmQ8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464386057</pqid></control><display><type>article</type><title>Ruin probabilities for risk processes with non-stationary arrivals and subexponential claims</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Elsevier SD Backfile Mathematics</source><source>ScienceDirect Journals</source><source>Elsevier SD Backfile Economics</source><creator>Zhu, Lingjiong</creator><creatorcontrib>Zhu, Lingjiong</creatorcontrib><description>In this paper, we obtain the finite-horizon and infinite-horizon ruin probability asymptotics for risk processes with claims of subexponential tails for non-stationary arrival processes that satisfy a large deviation principle. As a result, the arrival process can be dependent, non-stationary and non-renewal. We give three examples of non-stationary and non-renewal point processes: Hawkes process, Cox process with shot noise intensity and self-correcting point process. We also show some aggregate claims results for these three examples. •Asymptotic ruin probabilities for risk processes with subexponential claims.•Some aggregate claims asymptotics are also studied.•Arrival process can be non-stationary and non-renewal.•The key assumption is arrival process satisfies a large deviation principle.•We apply our results to three examples of arrival processes.</description><identifier>ISSN: 0167-6687</identifier><identifier>EISSN: 1873-5959</identifier><identifier>DOI: 10.1016/j.insmatheco.2013.08.008</identifier><identifier>CODEN: IMECDX</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Asymptotic methods ; Economic theory ; Hawkes processes ; Insurance claims ; Non-stationary processes ; Probability ; Risk assessment ; Risk processes ; Risk theory ; Ruin probabilities ; Self-correcting point processes ; Shot noise processes ; Stationarity ; Studies ; Subexponential distributions</subject><ispartof>Insurance, mathematics &amp; economics, 2013-11, Vol.53 (3), p.544-550</ispartof><rights>2013 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Nov 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-25a2a39747f43ca77392310535ca5f5f01213a1d261ef55871d785a9c75d35913</citedby><cites>FETCH-LOGICAL-c443t-25a2a39747f43ca77392310535ca5f5f01213a1d261ef55871d785a9c75d35913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167668713001194$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3460,3564,27924,27925,33223,33224,45992,46003</link.rule.ids></links><search><creatorcontrib>Zhu, Lingjiong</creatorcontrib><title>Ruin probabilities for risk processes with non-stationary arrivals and subexponential claims</title><title>Insurance, mathematics &amp; economics</title><description>In this paper, we obtain the finite-horizon and infinite-horizon ruin probability asymptotics for risk processes with claims of subexponential tails for non-stationary arrival processes that satisfy a large deviation principle. As a result, the arrival process can be dependent, non-stationary and non-renewal. We give three examples of non-stationary and non-renewal point processes: Hawkes process, Cox process with shot noise intensity and self-correcting point process. We also show some aggregate claims results for these three examples. •Asymptotic ruin probabilities for risk processes with subexponential claims.•Some aggregate claims asymptotics are also studied.•Arrival process can be non-stationary and non-renewal.•The key assumption is arrival process satisfies a large deviation principle.•We apply our results to three examples of arrival processes.</description><subject>Asymptotic methods</subject><subject>Economic theory</subject><subject>Hawkes processes</subject><subject>Insurance claims</subject><subject>Non-stationary processes</subject><subject>Probability</subject><subject>Risk assessment</subject><subject>Risk processes</subject><subject>Risk theory</subject><subject>Ruin probabilities</subject><subject>Self-correcting point processes</subject><subject>Shot noise processes</subject><subject>Stationarity</subject><subject>Studies</subject><subject>Subexponential distributions</subject><issn>0167-6687</issn><issn>1873-5959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqFkFFrFDEUhYMouFb_Q6AvvsyYO5lMMo-1WBUKhdK-CSGbydC7ziZrbqbVf2-WLRR88enC4TuHcw9jHEQLAoZPuxYj7V15CD61nQDZCtMKYV6xDRgtGzWq8TXbVFQ3w2D0W_aOaCeEgHHQG_bjdsXIDzlt3RYXLBiIzynzjPTzKPtAVKUnLA88pthQcQVTdPkPdznjo1uIuzhxWrfh9yHFEAu6hfvF4Z7eszdzBcKH53vG7q--3F1-a65vvn6_vLhufN_L0nTKdU6OutdzL73TWo6dBKGk8k7NahbQgXQwdQOEWSmjYdJGudFrNUk1gjxjH0-5tfCvNVCxeyQflsXFkFayoGBUopeqr-j5P-gurTnWdhb6oZdmEEpXypwonxNRDrM9ZNzXpy0Ie5zd7uzL7PY4uxXG1tmr9fPJGurDjxiyJY8h-jBhDr7YKeH_Q_4CnPmQ8A</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Zhu, Lingjiong</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>20131101</creationdate><title>Ruin probabilities for risk processes with non-stationary arrivals and subexponential claims</title><author>Zhu, Lingjiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-25a2a39747f43ca77392310535ca5f5f01213a1d261ef55871d785a9c75d35913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Asymptotic methods</topic><topic>Economic theory</topic><topic>Hawkes processes</topic><topic>Insurance claims</topic><topic>Non-stationary processes</topic><topic>Probability</topic><topic>Risk assessment</topic><topic>Risk processes</topic><topic>Risk theory</topic><topic>Ruin probabilities</topic><topic>Self-correcting point processes</topic><topic>Shot noise processes</topic><topic>Stationarity</topic><topic>Studies</topic><topic>Subexponential distributions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Lingjiong</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Insurance, mathematics &amp; economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Lingjiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ruin probabilities for risk processes with non-stationary arrivals and subexponential claims</atitle><jtitle>Insurance, mathematics &amp; economics</jtitle><date>2013-11-01</date><risdate>2013</risdate><volume>53</volume><issue>3</issue><spage>544</spage><epage>550</epage><pages>544-550</pages><issn>0167-6687</issn><eissn>1873-5959</eissn><coden>IMECDX</coden><abstract>In this paper, we obtain the finite-horizon and infinite-horizon ruin probability asymptotics for risk processes with claims of subexponential tails for non-stationary arrival processes that satisfy a large deviation principle. As a result, the arrival process can be dependent, non-stationary and non-renewal. We give three examples of non-stationary and non-renewal point processes: Hawkes process, Cox process with shot noise intensity and self-correcting point process. We also show some aggregate claims results for these three examples. •Asymptotic ruin probabilities for risk processes with subexponential claims.•Some aggregate claims asymptotics are also studied.•Arrival process can be non-stationary and non-renewal.•The key assumption is arrival process satisfies a large deviation principle.•We apply our results to three examples of arrival processes.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.insmatheco.2013.08.008</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-6687
ispartof Insurance, mathematics & economics, 2013-11, Vol.53 (3), p.544-550
issn 0167-6687
1873-5959
language eng
recordid cdi_proquest_miscellaneous_1519504354
source International Bibliography of the Social Sciences (IBSS); Elsevier SD Backfile Mathematics; ScienceDirect Journals; Elsevier SD Backfile Economics
subjects Asymptotic methods
Economic theory
Hawkes processes
Insurance claims
Non-stationary processes
Probability
Risk assessment
Risk processes
Risk theory
Ruin probabilities
Self-correcting point processes
Shot noise processes
Stationarity
Studies
Subexponential distributions
title Ruin probabilities for risk processes with non-stationary arrivals and subexponential claims
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A53%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ruin%20probabilities%20for%20risk%20processes%20with%20non-stationary%20arrivals%20and%20subexponential%20claims&rft.jtitle=Insurance,%20mathematics%20&%20economics&rft.au=Zhu,%20Lingjiong&rft.date=2013-11-01&rft.volume=53&rft.issue=3&rft.spage=544&rft.epage=550&rft.pages=544-550&rft.issn=0167-6687&rft.eissn=1873-5959&rft.coden=IMECDX&rft_id=info:doi/10.1016/j.insmatheco.2013.08.008&rft_dat=%3Cproquest_cross%3E1519504354%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-25a2a39747f43ca77392310535ca5f5f01213a1d261ef55871d785a9c75d35913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1464386057&rft_id=info:pmid/&rfr_iscdi=true