Loading…
Ruin probabilities for risk processes with non-stationary arrivals and subexponential claims
In this paper, we obtain the finite-horizon and infinite-horizon ruin probability asymptotics for risk processes with claims of subexponential tails for non-stationary arrival processes that satisfy a large deviation principle. As a result, the arrival process can be dependent, non-stationary and no...
Saved in:
Published in: | Insurance, mathematics & economics mathematics & economics, 2013-11, Vol.53 (3), p.544-550 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c443t-25a2a39747f43ca77392310535ca5f5f01213a1d261ef55871d785a9c75d35913 |
---|---|
cites | cdi_FETCH-LOGICAL-c443t-25a2a39747f43ca77392310535ca5f5f01213a1d261ef55871d785a9c75d35913 |
container_end_page | 550 |
container_issue | 3 |
container_start_page | 544 |
container_title | Insurance, mathematics & economics |
container_volume | 53 |
creator | Zhu, Lingjiong |
description | In this paper, we obtain the finite-horizon and infinite-horizon ruin probability asymptotics for risk processes with claims of subexponential tails for non-stationary arrival processes that satisfy a large deviation principle. As a result, the arrival process can be dependent, non-stationary and non-renewal. We give three examples of non-stationary and non-renewal point processes: Hawkes process, Cox process with shot noise intensity and self-correcting point process. We also show some aggregate claims results for these three examples.
•Asymptotic ruin probabilities for risk processes with subexponential claims.•Some aggregate claims asymptotics are also studied.•Arrival process can be non-stationary and non-renewal.•The key assumption is arrival process satisfies a large deviation principle.•We apply our results to three examples of arrival processes. |
doi_str_mv | 10.1016/j.insmatheco.2013.08.008 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1519504354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167668713001194</els_id><sourcerecordid>1519504354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-25a2a39747f43ca77392310535ca5f5f01213a1d261ef55871d785a9c75d35913</originalsourceid><addsrcrecordid>eNqFkFFrFDEUhYMouFb_Q6AvvsyYO5lMMo-1WBUKhdK-CSGbydC7ziZrbqbVf2-WLRR88enC4TuHcw9jHEQLAoZPuxYj7V15CD61nQDZCtMKYV6xDRgtGzWq8TXbVFQ3w2D0W_aOaCeEgHHQG_bjdsXIDzlt3RYXLBiIzynzjPTzKPtAVKUnLA88pthQcQVTdPkPdznjo1uIuzhxWrfh9yHFEAu6hfvF4Z7eszdzBcKH53vG7q--3F1-a65vvn6_vLhufN_L0nTKdU6OutdzL73TWo6dBKGk8k7NahbQgXQwdQOEWSmjYdJGudFrNUk1gjxjH0-5tfCvNVCxeyQflsXFkFayoGBUopeqr-j5P-gurTnWdhb6oZdmEEpXypwonxNRDrM9ZNzXpy0Ie5zd7uzL7PY4uxXG1tmr9fPJGurDjxiyJY8h-jBhDr7YKeH_Q_4CnPmQ8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464386057</pqid></control><display><type>article</type><title>Ruin probabilities for risk processes with non-stationary arrivals and subexponential claims</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Elsevier SD Backfile Mathematics</source><source>ScienceDirect Journals</source><source>Elsevier SD Backfile Economics</source><creator>Zhu, Lingjiong</creator><creatorcontrib>Zhu, Lingjiong</creatorcontrib><description>In this paper, we obtain the finite-horizon and infinite-horizon ruin probability asymptotics for risk processes with claims of subexponential tails for non-stationary arrival processes that satisfy a large deviation principle. As a result, the arrival process can be dependent, non-stationary and non-renewal. We give three examples of non-stationary and non-renewal point processes: Hawkes process, Cox process with shot noise intensity and self-correcting point process. We also show some aggregate claims results for these three examples.
•Asymptotic ruin probabilities for risk processes with subexponential claims.•Some aggregate claims asymptotics are also studied.•Arrival process can be non-stationary and non-renewal.•The key assumption is arrival process satisfies a large deviation principle.•We apply our results to three examples of arrival processes.</description><identifier>ISSN: 0167-6687</identifier><identifier>EISSN: 1873-5959</identifier><identifier>DOI: 10.1016/j.insmatheco.2013.08.008</identifier><identifier>CODEN: IMECDX</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Asymptotic methods ; Economic theory ; Hawkes processes ; Insurance claims ; Non-stationary processes ; Probability ; Risk assessment ; Risk processes ; Risk theory ; Ruin probabilities ; Self-correcting point processes ; Shot noise processes ; Stationarity ; Studies ; Subexponential distributions</subject><ispartof>Insurance, mathematics & economics, 2013-11, Vol.53 (3), p.544-550</ispartof><rights>2013 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Nov 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-25a2a39747f43ca77392310535ca5f5f01213a1d261ef55871d785a9c75d35913</citedby><cites>FETCH-LOGICAL-c443t-25a2a39747f43ca77392310535ca5f5f01213a1d261ef55871d785a9c75d35913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167668713001194$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3460,3564,27924,27925,33223,33224,45992,46003</link.rule.ids></links><search><creatorcontrib>Zhu, Lingjiong</creatorcontrib><title>Ruin probabilities for risk processes with non-stationary arrivals and subexponential claims</title><title>Insurance, mathematics & economics</title><description>In this paper, we obtain the finite-horizon and infinite-horizon ruin probability asymptotics for risk processes with claims of subexponential tails for non-stationary arrival processes that satisfy a large deviation principle. As a result, the arrival process can be dependent, non-stationary and non-renewal. We give three examples of non-stationary and non-renewal point processes: Hawkes process, Cox process with shot noise intensity and self-correcting point process. We also show some aggregate claims results for these three examples.
•Asymptotic ruin probabilities for risk processes with subexponential claims.•Some aggregate claims asymptotics are also studied.•Arrival process can be non-stationary and non-renewal.•The key assumption is arrival process satisfies a large deviation principle.•We apply our results to three examples of arrival processes.</description><subject>Asymptotic methods</subject><subject>Economic theory</subject><subject>Hawkes processes</subject><subject>Insurance claims</subject><subject>Non-stationary processes</subject><subject>Probability</subject><subject>Risk assessment</subject><subject>Risk processes</subject><subject>Risk theory</subject><subject>Ruin probabilities</subject><subject>Self-correcting point processes</subject><subject>Shot noise processes</subject><subject>Stationarity</subject><subject>Studies</subject><subject>Subexponential distributions</subject><issn>0167-6687</issn><issn>1873-5959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNqFkFFrFDEUhYMouFb_Q6AvvsyYO5lMMo-1WBUKhdK-CSGbydC7ziZrbqbVf2-WLRR88enC4TuHcw9jHEQLAoZPuxYj7V15CD61nQDZCtMKYV6xDRgtGzWq8TXbVFQ3w2D0W_aOaCeEgHHQG_bjdsXIDzlt3RYXLBiIzynzjPTzKPtAVKUnLA88pthQcQVTdPkPdznjo1uIuzhxWrfh9yHFEAu6hfvF4Z7eszdzBcKH53vG7q--3F1-a65vvn6_vLhufN_L0nTKdU6OutdzL73TWo6dBKGk8k7NahbQgXQwdQOEWSmjYdJGudFrNUk1gjxjH0-5tfCvNVCxeyQflsXFkFayoGBUopeqr-j5P-gurTnWdhb6oZdmEEpXypwonxNRDrM9ZNzXpy0Ie5zd7uzL7PY4uxXG1tmr9fPJGurDjxiyJY8h-jBhDr7YKeH_Q_4CnPmQ8A</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Zhu, Lingjiong</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>20131101</creationdate><title>Ruin probabilities for risk processes with non-stationary arrivals and subexponential claims</title><author>Zhu, Lingjiong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-25a2a39747f43ca77392310535ca5f5f01213a1d261ef55871d785a9c75d35913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Asymptotic methods</topic><topic>Economic theory</topic><topic>Hawkes processes</topic><topic>Insurance claims</topic><topic>Non-stationary processes</topic><topic>Probability</topic><topic>Risk assessment</topic><topic>Risk processes</topic><topic>Risk theory</topic><topic>Ruin probabilities</topic><topic>Self-correcting point processes</topic><topic>Shot noise processes</topic><topic>Stationarity</topic><topic>Studies</topic><topic>Subexponential distributions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Lingjiong</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Insurance, mathematics & economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Lingjiong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ruin probabilities for risk processes with non-stationary arrivals and subexponential claims</atitle><jtitle>Insurance, mathematics & economics</jtitle><date>2013-11-01</date><risdate>2013</risdate><volume>53</volume><issue>3</issue><spage>544</spage><epage>550</epage><pages>544-550</pages><issn>0167-6687</issn><eissn>1873-5959</eissn><coden>IMECDX</coden><abstract>In this paper, we obtain the finite-horizon and infinite-horizon ruin probability asymptotics for risk processes with claims of subexponential tails for non-stationary arrival processes that satisfy a large deviation principle. As a result, the arrival process can be dependent, non-stationary and non-renewal. We give three examples of non-stationary and non-renewal point processes: Hawkes process, Cox process with shot noise intensity and self-correcting point process. We also show some aggregate claims results for these three examples.
•Asymptotic ruin probabilities for risk processes with subexponential claims.•Some aggregate claims asymptotics are also studied.•Arrival process can be non-stationary and non-renewal.•The key assumption is arrival process satisfies a large deviation principle.•We apply our results to three examples of arrival processes.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.insmatheco.2013.08.008</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-6687 |
ispartof | Insurance, mathematics & economics, 2013-11, Vol.53 (3), p.544-550 |
issn | 0167-6687 1873-5959 |
language | eng |
recordid | cdi_proquest_miscellaneous_1519504354 |
source | International Bibliography of the Social Sciences (IBSS); Elsevier SD Backfile Mathematics; ScienceDirect Journals; Elsevier SD Backfile Economics |
subjects | Asymptotic methods Economic theory Hawkes processes Insurance claims Non-stationary processes Probability Risk assessment Risk processes Risk theory Ruin probabilities Self-correcting point processes Shot noise processes Stationarity Studies Subexponential distributions |
title | Ruin probabilities for risk processes with non-stationary arrivals and subexponential claims |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A53%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ruin%20probabilities%20for%20risk%20processes%20with%20non-stationary%20arrivals%20and%20subexponential%20claims&rft.jtitle=Insurance,%20mathematics%20&%20economics&rft.au=Zhu,%20Lingjiong&rft.date=2013-11-01&rft.volume=53&rft.issue=3&rft.spage=544&rft.epage=550&rft.pages=544-550&rft.issn=0167-6687&rft.eissn=1873-5959&rft.coden=IMECDX&rft_id=info:doi/10.1016/j.insmatheco.2013.08.008&rft_dat=%3Cproquest_cross%3E1519504354%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c443t-25a2a39747f43ca77392310535ca5f5f01213a1d261ef55871d785a9c75d35913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1464386057&rft_id=info:pmid/&rfr_iscdi=true |