Loading…
Matrix measure strategies for stability and synchronization of inertial BAM neural network with time delays
A single inertial BAM neural network with time-varying delays and external inputs is concerned in this paper. First, by choosing suitable variable substitution, the original system can be transformed into first-order differential equations. Then, we present several sufficient conditions for the glob...
Saved in:
Published in: | Neural networks 2014-05, Vol.53, p.165-172 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A single inertial BAM neural network with time-varying delays and external inputs is concerned in this paper. First, by choosing suitable variable substitution, the original system can be transformed into first-order differential equations. Then, we present several sufficient conditions for the global exponential stability of the equilibrium by using matrix measure and Halanay inequality, these criteria are simple in form and easy to verify in practice. Furthermore, when employing an error-feedback control term to the response neural network, parallel criteria regarding to the exponential synchronization of the drive-response neural network are also generated. Finally, some examples are given to illustrate our theoretical results. |
---|---|
ISSN: | 0893-6080 1879-2782 |
DOI: | 10.1016/j.neunet.2014.02.003 |