Loading…

Bradykinin regulates the expression of claudin-5 in brain microvascular endothelial cells via calcium-induced calcium release

To investigate the mechanism underlying the regulation of claudin‐5, a tight junction protein that participates primarily in the constitution of the blood–brain barrier by bradykinin (BK), we established a primary culture of rat brain microvascular endothelial cells (BMECs). BMECs were treated with...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neuroscience research 2014-05, Vol.92 (5), p.597-606
Main Authors: Zhou, Lei, Yang, Bo, Wang, Yong, Zhang, Hong-Liang, Chen, Run-Wei, Wang, Yi-Bao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To investigate the mechanism underlying the regulation of claudin‐5, a tight junction protein that participates primarily in the constitution of the blood–brain barrier by bradykinin (BK), we established a primary culture of rat brain microvascular endothelial cells (BMECs). BMECs were treated with 10−5 M BK, and changes in the intracellular Ca2+ levels were measured by using the sensitive fluorescent dye fluo‐3; the expression and distribution of claudin‐5 were investigated by immunocytochemistry and Western blot analyses. We did not detect any expression of bradykinin B2 receptors in the BMECs or freshly isolated rat brain microvessels. We found that 10−5 M BK triggered Ca2+ transients in BMECs, and further investigations revealed that inositol 1,4,5‐trisphosphate receptors (IP3Rs) and ryanodine receptors (RyRs) on the endoplasmic reticulum (ER) were responsible for the Ca2+ fluctuation. Consequently, these intracellular Ca2+ changes that occur in response to BK application were identified as Ca2+‐induced Ca2+ release (CICR). Immunocytochemistry and Western blot results demonstrated that 10−5 M BK could cause the internalization and a decrease in the expression of claudin‐5; agonists of IP3Rs and RyRs, such as IP3 and caffeine, enhanced the BK‐induced downregulation of claudin‐5, whereas antagonists of IP3Rs and RyRs, such as 2‐APB and ryanodine, abrogated BK's effect on claudin‐5. In conclusion, the BK‐induced CICR in primary culture BMECs might be the mechanism by which BK modulates claudin‐5. © 2014 Wiley Periodicals, Inc.
ISSN:0360-4012
1097-4547
DOI:10.1002/jnr.23350