Loading…

Imaging hypothalamic activity using diffusion weighted magnetic resonance imaging in the mouse and human brain

Hypothalamic appetite regulation is a vital homeostatic process underlying global energy balance in animals and humans, its disturbances resulting in feeding disorders with high morbidity and mortality. The objective evaluation of appetite remains difficult, very often restricted to indirect measure...

Full description

Saved in:
Bibliographic Details
Published in:NeuroImage (Orlando, Fla.) Fla.), 2013-01, Vol.64, p.448-457
Main Authors: Lizarbe, Blanca, Benítez, Ania, Sánchez-Montañés, Manuel, Lago-Fernández, Luis F., Garcia-Martin, María L., López-Larrubia, Pilar, Cerdán, Sebastián
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c515t-e4cdd9c2ea78e2773032b0361a0341ad31b067ec47de804b4f1aa8c949e4877f3
cites cdi_FETCH-LOGICAL-c515t-e4cdd9c2ea78e2773032b0361a0341ad31b067ec47de804b4f1aa8c949e4877f3
container_end_page 457
container_issue
container_start_page 448
container_title NeuroImage (Orlando, Fla.)
container_volume 64
creator Lizarbe, Blanca
Benítez, Ania
Sánchez-Montañés, Manuel
Lago-Fernández, Luis F.
Garcia-Martin, María L.
López-Larrubia, Pilar
Cerdán, Sebastián
description Hypothalamic appetite regulation is a vital homeostatic process underlying global energy balance in animals and humans, its disturbances resulting in feeding disorders with high morbidity and mortality. The objective evaluation of appetite remains difficult, very often restricted to indirect measurements of food intake and body weight. We report here, the direct, non‐invasive visualization of hypothalamic activation by fasting using diffusion weighted magnetic resonance imaging, in the mouse brain as well as in a preliminary study in the human brain. The brain of fed or fasted mice or humans were imaged at 7 or 1.5Tesla, respectively, by diffusion weighted magnetic resonance imaging using a complete range of b values (10
doi_str_mv 10.1016/j.neuroimage.2012.09.033
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1520381478</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811912009433</els_id><sourcerecordid>1520381478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c515t-e4cdd9c2ea78e2773032b0361a0341ad31b067ec47de804b4f1aa8c949e4877f3</originalsourceid><addsrcrecordid>eNqFkV-L1DAUxYso7h_9ChIQwZfW3KRtkkdddF1Y8EWfQ5reTjNM0zFpd5lv7x1mdMGXfcqF_M7JzTlFwYBXwKH9tK0irmkOk9tgJTiIipuKS_miuARumtI0Srw8zo0sNYC5KK5y3nLODdT6dXEhJM1Kq8si3pFHiBs2HvbzMrqdm4Jnzi_hISwHtubjXR-GgaY5skcMm3HBnpEq4kJowjxHFz2ycHYKkS0jsmleMzIXezauk4usSy7EN8Wrwe0yvj2f18Wvb19_3nwv73_c3t18vi99A81SYu373niBTmkUSkkuRcdlC47LGlwvoeOtQl-rHjWvu3oA57Q3tcFaKzXI6-LjyXef5t8r5sVOIXvc7VxE2stCI7jUUCv9PCoIbZURitD3_6HbeU2RPkKG5Ci4gpYofaJ8mnNOONh9omzSwQK3x_rs1j7VZ4_1WW4s1UfSd-cH1m7C_p_wb18EfDgDLnu3GxIlH_ITpwC4EkDclxOHFPJDwGSzD0gt9SGhX2w_h-e3-QPgBL4F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1552020716</pqid></control><display><type>article</type><title>Imaging hypothalamic activity using diffusion weighted magnetic resonance imaging in the mouse and human brain</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Lizarbe, Blanca ; Benítez, Ania ; Sánchez-Montañés, Manuel ; Lago-Fernández, Luis F. ; Garcia-Martin, María L. ; López-Larrubia, Pilar ; Cerdán, Sebastián</creator><creatorcontrib>Lizarbe, Blanca ; Benítez, Ania ; Sánchez-Montañés, Manuel ; Lago-Fernández, Luis F. ; Garcia-Martin, María L. ; López-Larrubia, Pilar ; Cerdán, Sebastián</creatorcontrib><description>Hypothalamic appetite regulation is a vital homeostatic process underlying global energy balance in animals and humans, its disturbances resulting in feeding disorders with high morbidity and mortality. The objective evaluation of appetite remains difficult, very often restricted to indirect measurements of food intake and body weight. We report here, the direct, non‐invasive visualization of hypothalamic activation by fasting using diffusion weighted magnetic resonance imaging, in the mouse brain as well as in a preliminary study in the human brain. The brain of fed or fasted mice or humans were imaged at 7 or 1.5Tesla, respectively, by diffusion weighted magnetic resonance imaging using a complete range of b values (10&lt;b&lt;2000s.mm−2). The diffusion weighted image data sets were registered and analyzed pixel by pixel using a biexponential model of diffusion, or a model-free Linear Discriminant Analysis approach. Biexponential fittings revealed statistically significant increases in the slow diffusion parameters of the model, consistent with a neurocellular swelling response in the fasted hypothalamus. Increased resolution approaches allowed the detection of increases in the diffusion parameters within the Arcuate Nucleus, Ventromedial Nucleus and Dorsomedial Nucleus. Independently, Linear Discriminant Analysis was able to classify successfully the diffusion data sets from mice and humans between fed and fasted states. Present results are consistent with increased glutamatergic neurotransmission during orexigenic firing, a process resulting in increased ionic accumulation and concomitant osmotic neurocellular swelling. This swelling response is spatially extendable through surrounding astrocytic networks until it becomes MRI detectable. Present findings open new avenues for the direct, non‐invasive, evaluation of appetite disorders and other hypothalamic pathologies helping potentially in the development of the corresponding therapies. We investigate the non‐invasive evaluation of the appetite impulse by diffusion weighted magnetic resonance imaging. We report that hypothalamic activation by fasting in mice (and humans) can be detected through increases in the slow diffusion phase (SDP) and the slow diffusion coefficient (Dslow) parameters of the hypothalamus and some hypothalamic nuclei. Model independent Linear Discriminant Analysis is able also to classify successfully all data sets between fed and fasted states. [Display omitted] ► DWI identifies hypothalamic activation by fasting in mice and humans. ► Increases in diffusion parameters can be observed in subhypothalamic nuclei. ► Fisher analysis discriminates DWI from fed and fasted states in mice and humans. ► Increases in diffusion may reveal osmotic changes associated with neuronal firing. ► DWI provides a useful tool to evaluate hypothalamic performance.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2012.09.033</identifier><identifier>PMID: 23000787</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Action Potentials - physiology ; Adult ; Algorithms ; Animals ; Appetite - physiology ; Appetite regulation ; Biexponential diffusion ; Biological and medical sciences ; Body temperature ; Brain Mapping - methods ; Cerebral activation ; Diet ; Diffusion ; Diffusion Magnetic Resonance Imaging ; Diffusion weighted MRI ; Experiments ; Fasting - physiology ; Food ; Functional imaging ; Fundamental and applied biological sciences. Psychology ; Humans ; Hypothalamus - physiology ; Image analysis ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Insulin ; Male ; Methods ; Mice ; Mice, Inbred C57BL ; NMR ; Nuclear magnetic resonance ; Nutrition research ; Reproducibility of Results ; Rodents ; Sensitivity and Specificity ; Species Specificity ; Studies ; Vertebrates: nervous system and sense organs ; Volunteers ; Young Adult</subject><ispartof>NeuroImage (Orlando, Fla.), 2013-01, Vol.64, p.448-457</ispartof><rights>2012 Elsevier Inc.</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Jan 1, 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c515t-e4cdd9c2ea78e2773032b0361a0341ad31b067ec47de804b4f1aa8c949e4877f3</citedby><cites>FETCH-LOGICAL-c515t-e4cdd9c2ea78e2773032b0361a0341ad31b067ec47de804b4f1aa8c949e4877f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4022,27922,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27110721$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23000787$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lizarbe, Blanca</creatorcontrib><creatorcontrib>Benítez, Ania</creatorcontrib><creatorcontrib>Sánchez-Montañés, Manuel</creatorcontrib><creatorcontrib>Lago-Fernández, Luis F.</creatorcontrib><creatorcontrib>Garcia-Martin, María L.</creatorcontrib><creatorcontrib>López-Larrubia, Pilar</creatorcontrib><creatorcontrib>Cerdán, Sebastián</creatorcontrib><title>Imaging hypothalamic activity using diffusion weighted magnetic resonance imaging in the mouse and human brain</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Hypothalamic appetite regulation is a vital homeostatic process underlying global energy balance in animals and humans, its disturbances resulting in feeding disorders with high morbidity and mortality. The objective evaluation of appetite remains difficult, very often restricted to indirect measurements of food intake and body weight. We report here, the direct, non‐invasive visualization of hypothalamic activation by fasting using diffusion weighted magnetic resonance imaging, in the mouse brain as well as in a preliminary study in the human brain. The brain of fed or fasted mice or humans were imaged at 7 or 1.5Tesla, respectively, by diffusion weighted magnetic resonance imaging using a complete range of b values (10&lt;b&lt;2000s.mm−2). The diffusion weighted image data sets were registered and analyzed pixel by pixel using a biexponential model of diffusion, or a model-free Linear Discriminant Analysis approach. Biexponential fittings revealed statistically significant increases in the slow diffusion parameters of the model, consistent with a neurocellular swelling response in the fasted hypothalamus. Increased resolution approaches allowed the detection of increases in the diffusion parameters within the Arcuate Nucleus, Ventromedial Nucleus and Dorsomedial Nucleus. Independently, Linear Discriminant Analysis was able to classify successfully the diffusion data sets from mice and humans between fed and fasted states. Present results are consistent with increased glutamatergic neurotransmission during orexigenic firing, a process resulting in increased ionic accumulation and concomitant osmotic neurocellular swelling. This swelling response is spatially extendable through surrounding astrocytic networks until it becomes MRI detectable. Present findings open new avenues for the direct, non‐invasive, evaluation of appetite disorders and other hypothalamic pathologies helping potentially in the development of the corresponding therapies. We investigate the non‐invasive evaluation of the appetite impulse by diffusion weighted magnetic resonance imaging. We report that hypothalamic activation by fasting in mice (and humans) can be detected through increases in the slow diffusion phase (SDP) and the slow diffusion coefficient (Dslow) parameters of the hypothalamus and some hypothalamic nuclei. Model independent Linear Discriminant Analysis is able also to classify successfully all data sets between fed and fasted states. [Display omitted] ► DWI identifies hypothalamic activation by fasting in mice and humans. ► Increases in diffusion parameters can be observed in subhypothalamic nuclei. ► Fisher analysis discriminates DWI from fed and fasted states in mice and humans. ► Increases in diffusion may reveal osmotic changes associated with neuronal firing. ► DWI provides a useful tool to evaluate hypothalamic performance.</description><subject>Action Potentials - physiology</subject><subject>Adult</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Appetite - physiology</subject><subject>Appetite regulation</subject><subject>Biexponential diffusion</subject><subject>Biological and medical sciences</subject><subject>Body temperature</subject><subject>Brain Mapping - methods</subject><subject>Cerebral activation</subject><subject>Diet</subject><subject>Diffusion</subject><subject>Diffusion Magnetic Resonance Imaging</subject><subject>Diffusion weighted MRI</subject><subject>Experiments</subject><subject>Fasting - physiology</subject><subject>Food</subject><subject>Functional imaging</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Hypothalamus - physiology</subject><subject>Image analysis</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Insulin</subject><subject>Male</subject><subject>Methods</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Nutrition research</subject><subject>Reproducibility of Results</subject><subject>Rodents</subject><subject>Sensitivity and Specificity</subject><subject>Species Specificity</subject><subject>Studies</subject><subject>Vertebrates: nervous system and sense organs</subject><subject>Volunteers</subject><subject>Young Adult</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkV-L1DAUxYso7h_9ChIQwZfW3KRtkkdddF1Y8EWfQ5reTjNM0zFpd5lv7x1mdMGXfcqF_M7JzTlFwYBXwKH9tK0irmkOk9tgJTiIipuKS_miuARumtI0Srw8zo0sNYC5KK5y3nLODdT6dXEhJM1Kq8si3pFHiBs2HvbzMrqdm4Jnzi_hISwHtubjXR-GgaY5skcMm3HBnpEq4kJowjxHFz2ycHYKkS0jsmleMzIXezauk4usSy7EN8Wrwe0yvj2f18Wvb19_3nwv73_c3t18vi99A81SYu373niBTmkUSkkuRcdlC47LGlwvoeOtQl-rHjWvu3oA57Q3tcFaKzXI6-LjyXef5t8r5sVOIXvc7VxE2stCI7jUUCv9PCoIbZURitD3_6HbeU2RPkKG5Ci4gpYofaJ8mnNOONh9omzSwQK3x_rs1j7VZ4_1WW4s1UfSd-cH1m7C_p_wb18EfDgDLnu3GxIlH_ITpwC4EkDclxOHFPJDwGSzD0gt9SGhX2w_h-e3-QPgBL4F</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Lizarbe, Blanca</creator><creator>Benítez, Ania</creator><creator>Sánchez-Montañés, Manuel</creator><creator>Lago-Fernández, Luis F.</creator><creator>Garcia-Martin, María L.</creator><creator>López-Larrubia, Pilar</creator><creator>Cerdán, Sebastián</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Elsevier Limited</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20130101</creationdate><title>Imaging hypothalamic activity using diffusion weighted magnetic resonance imaging in the mouse and human brain</title><author>Lizarbe, Blanca ; Benítez, Ania ; Sánchez-Montañés, Manuel ; Lago-Fernández, Luis F. ; Garcia-Martin, María L. ; López-Larrubia, Pilar ; Cerdán, Sebastián</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c515t-e4cdd9c2ea78e2773032b0361a0341ad31b067ec47de804b4f1aa8c949e4877f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Action Potentials - physiology</topic><topic>Adult</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Appetite - physiology</topic><topic>Appetite regulation</topic><topic>Biexponential diffusion</topic><topic>Biological and medical sciences</topic><topic>Body temperature</topic><topic>Brain Mapping - methods</topic><topic>Cerebral activation</topic><topic>Diet</topic><topic>Diffusion</topic><topic>Diffusion Magnetic Resonance Imaging</topic><topic>Diffusion weighted MRI</topic><topic>Experiments</topic><topic>Fasting - physiology</topic><topic>Food</topic><topic>Functional imaging</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Hypothalamus - physiology</topic><topic>Image analysis</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Insulin</topic><topic>Male</topic><topic>Methods</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Nutrition research</topic><topic>Reproducibility of Results</topic><topic>Rodents</topic><topic>Sensitivity and Specificity</topic><topic>Species Specificity</topic><topic>Studies</topic><topic>Vertebrates: nervous system and sense organs</topic><topic>Volunteers</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lizarbe, Blanca</creatorcontrib><creatorcontrib>Benítez, Ania</creatorcontrib><creatorcontrib>Sánchez-Montañés, Manuel</creatorcontrib><creatorcontrib>Lago-Fernández, Luis F.</creatorcontrib><creatorcontrib>Garcia-Martin, María L.</creatorcontrib><creatorcontrib>López-Larrubia, Pilar</creatorcontrib><creatorcontrib>Cerdán, Sebastián</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lizarbe, Blanca</au><au>Benítez, Ania</au><au>Sánchez-Montañés, Manuel</au><au>Lago-Fernández, Luis F.</au><au>Garcia-Martin, María L.</au><au>López-Larrubia, Pilar</au><au>Cerdán, Sebastián</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaging hypothalamic activity using diffusion weighted magnetic resonance imaging in the mouse and human brain</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2013-01-01</date><risdate>2013</risdate><volume>64</volume><spage>448</spage><epage>457</epage><pages>448-457</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Hypothalamic appetite regulation is a vital homeostatic process underlying global energy balance in animals and humans, its disturbances resulting in feeding disorders with high morbidity and mortality. The objective evaluation of appetite remains difficult, very often restricted to indirect measurements of food intake and body weight. We report here, the direct, non‐invasive visualization of hypothalamic activation by fasting using diffusion weighted magnetic resonance imaging, in the mouse brain as well as in a preliminary study in the human brain. The brain of fed or fasted mice or humans were imaged at 7 or 1.5Tesla, respectively, by diffusion weighted magnetic resonance imaging using a complete range of b values (10&lt;b&lt;2000s.mm−2). The diffusion weighted image data sets were registered and analyzed pixel by pixel using a biexponential model of diffusion, or a model-free Linear Discriminant Analysis approach. Biexponential fittings revealed statistically significant increases in the slow diffusion parameters of the model, consistent with a neurocellular swelling response in the fasted hypothalamus. Increased resolution approaches allowed the detection of increases in the diffusion parameters within the Arcuate Nucleus, Ventromedial Nucleus and Dorsomedial Nucleus. Independently, Linear Discriminant Analysis was able to classify successfully the diffusion data sets from mice and humans between fed and fasted states. Present results are consistent with increased glutamatergic neurotransmission during orexigenic firing, a process resulting in increased ionic accumulation and concomitant osmotic neurocellular swelling. This swelling response is spatially extendable through surrounding astrocytic networks until it becomes MRI detectable. Present findings open new avenues for the direct, non‐invasive, evaluation of appetite disorders and other hypothalamic pathologies helping potentially in the development of the corresponding therapies. We investigate the non‐invasive evaluation of the appetite impulse by diffusion weighted magnetic resonance imaging. We report that hypothalamic activation by fasting in mice (and humans) can be detected through increases in the slow diffusion phase (SDP) and the slow diffusion coefficient (Dslow) parameters of the hypothalamus and some hypothalamic nuclei. Model independent Linear Discriminant Analysis is able also to classify successfully all data sets between fed and fasted states. [Display omitted] ► DWI identifies hypothalamic activation by fasting in mice and humans. ► Increases in diffusion parameters can be observed in subhypothalamic nuclei. ► Fisher analysis discriminates DWI from fed and fasted states in mice and humans. ► Increases in diffusion may reveal osmotic changes associated with neuronal firing. ► DWI provides a useful tool to evaluate hypothalamic performance.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><pmid>23000787</pmid><doi>10.1016/j.neuroimage.2012.09.033</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2013-01, Vol.64, p.448-457
issn 1053-8119
1095-9572
language eng
recordid cdi_proquest_miscellaneous_1520381478
source ScienceDirect Freedom Collection 2022-2024
subjects Action Potentials - physiology
Adult
Algorithms
Animals
Appetite - physiology
Appetite regulation
Biexponential diffusion
Biological and medical sciences
Body temperature
Brain Mapping - methods
Cerebral activation
Diet
Diffusion
Diffusion Magnetic Resonance Imaging
Diffusion weighted MRI
Experiments
Fasting - physiology
Food
Functional imaging
Fundamental and applied biological sciences. Psychology
Humans
Hypothalamus - physiology
Image analysis
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Insulin
Male
Methods
Mice
Mice, Inbred C57BL
NMR
Nuclear magnetic resonance
Nutrition research
Reproducibility of Results
Rodents
Sensitivity and Specificity
Species Specificity
Studies
Vertebrates: nervous system and sense organs
Volunteers
Young Adult
title Imaging hypothalamic activity using diffusion weighted magnetic resonance imaging in the mouse and human brain
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A12%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaging%20hypothalamic%20activity%20using%20diffusion%20weighted%20magnetic%20resonance%20imaging%20in%20the%20mouse%20and%20human%20brain&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Lizarbe,%20Blanca&rft.date=2013-01-01&rft.volume=64&rft.spage=448&rft.epage=457&rft.pages=448-457&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2012.09.033&rft_dat=%3Cproquest_cross%3E1520381478%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c515t-e4cdd9c2ea78e2773032b0361a0341ad31b067ec47de804b4f1aa8c949e4877f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1552020716&rft_id=info:pmid/23000787&rfr_iscdi=true