Loading…
Transport electrification: A key element for energy system transformation and climate stabilization
This paper analyzes the role of transport electrification in the broader context of energy system transformation and climate stabilization. As part of the EMF27 model inter-comparison exercise, we employ the MESSAGE integrated assessment modeling framework to conduct a systematic variation of availa...
Saved in:
Published in: | Climatic change 2014-04, Vol.123 (3-4), p.651-664 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper analyzes the role of transport electrification in the broader context of energy system transformation and climate stabilization. As part of the EMF27 model inter-comparison exercise, we employ the MESSAGE integrated assessment modeling framework to conduct a systematic variation of availability, cost, and performance of particular energy supply technologies, thereby deriving implications for feasibility of climate stabilization goals and the associated costs of mitigation. In addition, we explore a wide range of assumptions regarding the potential degree of electrification of the transportation sector. These analyses allow us to (i) test the extent to which the feasible attainment of stringent climate policy targets depends on transport electrification, and (ii) assess the far-reaching impacts that transport electrification could have throughout the rest of the energy system. A detailed analysis of the transition to electricity within the transport sector is not conducted. Our results indicate that while a low-carbon transport system built upon conventional liquid-based fuel delivery infrastructures is destined to become increasingly reliant on biofuels and synthetic liquids, electrification opens up a door through which nuclear energy and non-biomass renewables can flow. The latter has important implications for mitigation costs. |
---|---|
ISSN: | 0165-0009 1573-1480 |
DOI: | 10.1007/s10584-013-0969-z |