Loading…
Designing a Single-Stage Inverter for Photovoltaic System Application
This paper focuses on a full-bridge high-frequency isolated inverter which is proposed for distributed photovoltaic power supply application. The researched system consists of a full-bridge high-frequency DC/DC converter with the proposed symmetric phase-shift modulation algorithm to achieve the ZVS...
Saved in:
Published in: | Mathematical problems in engineering 2013-01, Vol.2013 (2013), p.1-8 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper focuses on a full-bridge high-frequency isolated inverter which is proposed for distributed photovoltaic power supply application. The researched system consists of a full-bridge high-frequency DC/DC converter with the proposed symmetric phase-shift modulation algorithm to achieve the ZVS switching function and a line frequency unfolding bridge. It replaces the traditional two stages of independent control algorithms with a one-stage control to obtain high conversion efficiency. A TMS 320F2812 digital signal processor-based control technique is used to achieve the desired algorithm function for the grid-connected photovoltaic power system application. The researched system can have two operating methods depending on the applied situation. Finally, a prototype of 300 W with the maximum power point function is settled to verify the proposed idea. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2013/912487 |