Loading…

Dynamic Origin-Destination Matrix Estimation on Large-Scale Congested Networks Using a Hierarchical Decomposition Scheme

Despite its ever-increasing computing power, dynamic origin-destination (OD) estimation in congested networks remains troublesome. In previous research, we have shown that an unbiased estimation requires the calculation of the sensitivity of the link flows to all origin-destination flows, in order t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of intelligent transportation systems 2014-01, Vol.18 (1), p.51-66
Main Authors: Frederix, Rodric, Viti, Francesco, Himpe, Willem W. E., Tampère, Chris M. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-d6839b89857eefbe3e19d831e7999191c80cbdfb43cef7033d0736d7b0a578a63
cites cdi_FETCH-LOGICAL-c368t-d6839b89857eefbe3e19d831e7999191c80cbdfb43cef7033d0736d7b0a578a63
container_end_page 66
container_issue 1
container_start_page 51
container_title Journal of intelligent transportation systems
container_volume 18
creator Frederix, Rodric
Viti, Francesco
Himpe, Willem W. E.
Tampère, Chris M. J.
description Despite its ever-increasing computing power, dynamic origin-destination (OD) estimation in congested networks remains troublesome. In previous research, we have shown that an unbiased estimation requires the calculation of the sensitivity of the link flows to all origin-destination flows, in order to incorporate the effects of congestion spillback. This is, however, computationally infeasible for large-scale networks. To overcome this issue, we propose a hierarchical approach for off-line application that decomposes the dynamic OD estimation procedure in space. The main idea is to perform a more accurate dynamic OD estimation only on subareas where there is congestion spillback. The output of this estimation is then used as input for the OD estimation on the whole network. This hierarchical approach solves many practical and theoretical limitations of traditional OD estimation methods. The main advantage is that different OD estimation method can be used for different parts of the network as necessary. This allows applying more advanced and accurate, but more time-consuming, methods only where necessary. The hierarchical approach is tested on a study network and on a real network. In both cases the proposed methodology performs better than traditional OD estimation approaches, indicating its merit.
doi_str_mv 10.1080/15472450.2013.773249
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1520943679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1520943679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-d6839b89857eefbe3e19d831e7999191c80cbdfb43cef7033d0736d7b0a578a63</originalsourceid><addsrcrecordid>eNp9kUFP3DAQhaMKpMLCP-BgqZdesh3HSWyfqmqXFqQtewDOluNMFtPEXuysYP99vYT2wAFppBk9ffM0mpdlFxTmFAR8o1XJi7KCeQGUzTlnRSk_ZScHOS_Ksjj6P1fwOTuN8RGg4ALgJHtZ7p0erCHrYDfW5UuMo3V6tN6R33oM9oVcJmWYlFQrHTaY3xrdI1l4t0k8tuQGx2cf_kRyH63bEE2uLAYdzINNIFmi8cPWR_tqcmsecMCz7LjTfcTztz7L7n9e3i2u8tX61_Xixyo3rBZj3taCyUZIUXHErkGGVLaCUeRSSiqpEWCatmtKZrDjwFgLnNUtb0BXXOiazbKvk-82-KddulYNNhrse-3Q76KiVQGyZDWXCf3yDn30u-DSdYmCWnImxIEqJ8oEH2PATm1D-k_YKwrqEIf6F4c6xKGmONLa92nNus6HQad39a0a9b73oQvaGRsV-9DhL9wnkeM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506973889</pqid></control><display><type>article</type><title>Dynamic Origin-Destination Matrix Estimation on Large-Scale Congested Networks Using a Hierarchical Decomposition Scheme</title><source>Taylor and Francis Science and Technology Collection</source><creator>Frederix, Rodric ; Viti, Francesco ; Himpe, Willem W. E. ; Tampère, Chris M. J.</creator><creatorcontrib>Frederix, Rodric ; Viti, Francesco ; Himpe, Willem W. E. ; Tampère, Chris M. J.</creatorcontrib><description>Despite its ever-increasing computing power, dynamic origin-destination (OD) estimation in congested networks remains troublesome. In previous research, we have shown that an unbiased estimation requires the calculation of the sensitivity of the link flows to all origin-destination flows, in order to incorporate the effects of congestion spillback. This is, however, computationally infeasible for large-scale networks. To overcome this issue, we propose a hierarchical approach for off-line application that decomposes the dynamic OD estimation procedure in space. The main idea is to perform a more accurate dynamic OD estimation only on subareas where there is congestion spillback. The output of this estimation is then used as input for the OD estimation on the whole network. This hierarchical approach solves many practical and theoretical limitations of traditional OD estimation methods. The main advantage is that different OD estimation method can be used for different parts of the network as necessary. This allows applying more advanced and accurate, but more time-consuming, methods only where necessary. The hierarchical approach is tested on a study network and on a real network. In both cases the proposed methodology performs better than traditional OD estimation approaches, indicating its merit.</description><identifier>ISSN: 1547-2450</identifier><identifier>EISSN: 1547-2442</identifier><identifier>DOI: 10.1080/15472450.2013.773249</identifier><language>eng</language><publisher>Philadelphia: Taylor &amp; Francis Group</publisher><subject>Computation ; Congestion ; Congestion Spillback ; Decomposition ; Dynamic Demand Estimation ; Dynamic Network Loading ; Dynamics ; Estimating techniques ; Large-Scale Networks ; Link Transmission Model ; Links ; Mathematical analysis ; Matrix ; Networks ; Traffic congestion ; Transportation systems</subject><ispartof>Journal of intelligent transportation systems, 2014-01, Vol.18 (1), p.51-66</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2014</rights><rights>Copyright Taylor &amp; Francis Ltd. 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-d6839b89857eefbe3e19d831e7999191c80cbdfb43cef7033d0736d7b0a578a63</citedby><cites>FETCH-LOGICAL-c368t-d6839b89857eefbe3e19d831e7999191c80cbdfb43cef7033d0736d7b0a578a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Frederix, Rodric</creatorcontrib><creatorcontrib>Viti, Francesco</creatorcontrib><creatorcontrib>Himpe, Willem W. E.</creatorcontrib><creatorcontrib>Tampère, Chris M. J.</creatorcontrib><title>Dynamic Origin-Destination Matrix Estimation on Large-Scale Congested Networks Using a Hierarchical Decomposition Scheme</title><title>Journal of intelligent transportation systems</title><description>Despite its ever-increasing computing power, dynamic origin-destination (OD) estimation in congested networks remains troublesome. In previous research, we have shown that an unbiased estimation requires the calculation of the sensitivity of the link flows to all origin-destination flows, in order to incorporate the effects of congestion spillback. This is, however, computationally infeasible for large-scale networks. To overcome this issue, we propose a hierarchical approach for off-line application that decomposes the dynamic OD estimation procedure in space. The main idea is to perform a more accurate dynamic OD estimation only on subareas where there is congestion spillback. The output of this estimation is then used as input for the OD estimation on the whole network. This hierarchical approach solves many practical and theoretical limitations of traditional OD estimation methods. The main advantage is that different OD estimation method can be used for different parts of the network as necessary. This allows applying more advanced and accurate, but more time-consuming, methods only where necessary. The hierarchical approach is tested on a study network and on a real network. In both cases the proposed methodology performs better than traditional OD estimation approaches, indicating its merit.</description><subject>Computation</subject><subject>Congestion</subject><subject>Congestion Spillback</subject><subject>Decomposition</subject><subject>Dynamic Demand Estimation</subject><subject>Dynamic Network Loading</subject><subject>Dynamics</subject><subject>Estimating techniques</subject><subject>Large-Scale Networks</subject><subject>Link Transmission Model</subject><subject>Links</subject><subject>Mathematical analysis</subject><subject>Matrix</subject><subject>Networks</subject><subject>Traffic congestion</subject><subject>Transportation systems</subject><issn>1547-2450</issn><issn>1547-2442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kUFP3DAQhaMKpMLCP-BgqZdesh3HSWyfqmqXFqQtewDOluNMFtPEXuysYP99vYT2wAFppBk9ffM0mpdlFxTmFAR8o1XJi7KCeQGUzTlnRSk_ZScHOS_Ksjj6P1fwOTuN8RGg4ALgJHtZ7p0erCHrYDfW5UuMo3V6tN6R33oM9oVcJmWYlFQrHTaY3xrdI1l4t0k8tuQGx2cf_kRyH63bEE2uLAYdzINNIFmi8cPWR_tqcmsecMCz7LjTfcTztz7L7n9e3i2u8tX61_Xixyo3rBZj3taCyUZIUXHErkGGVLaCUeRSSiqpEWCatmtKZrDjwFgLnNUtb0BXXOiazbKvk-82-KddulYNNhrse-3Q76KiVQGyZDWXCf3yDn30u-DSdYmCWnImxIEqJ8oEH2PATm1D-k_YKwrqEIf6F4c6xKGmONLa92nNus6HQad39a0a9b73oQvaGRsV-9DhL9wnkeM</recordid><startdate>20140102</startdate><enddate>20140102</enddate><creator>Frederix, Rodric</creator><creator>Viti, Francesco</creator><creator>Himpe, Willem W. E.</creator><creator>Tampère, Chris M. J.</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140102</creationdate><title>Dynamic Origin-Destination Matrix Estimation on Large-Scale Congested Networks Using a Hierarchical Decomposition Scheme</title><author>Frederix, Rodric ; Viti, Francesco ; Himpe, Willem W. E. ; Tampère, Chris M. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-d6839b89857eefbe3e19d831e7999191c80cbdfb43cef7033d0736d7b0a578a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Computation</topic><topic>Congestion</topic><topic>Congestion Spillback</topic><topic>Decomposition</topic><topic>Dynamic Demand Estimation</topic><topic>Dynamic Network Loading</topic><topic>Dynamics</topic><topic>Estimating techniques</topic><topic>Large-Scale Networks</topic><topic>Link Transmission Model</topic><topic>Links</topic><topic>Mathematical analysis</topic><topic>Matrix</topic><topic>Networks</topic><topic>Traffic congestion</topic><topic>Transportation systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frederix, Rodric</creatorcontrib><creatorcontrib>Viti, Francesco</creatorcontrib><creatorcontrib>Himpe, Willem W. E.</creatorcontrib><creatorcontrib>Tampère, Chris M. J.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frederix, Rodric</au><au>Viti, Francesco</au><au>Himpe, Willem W. E.</au><au>Tampère, Chris M. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Origin-Destination Matrix Estimation on Large-Scale Congested Networks Using a Hierarchical Decomposition Scheme</atitle><jtitle>Journal of intelligent transportation systems</jtitle><date>2014-01-02</date><risdate>2014</risdate><volume>18</volume><issue>1</issue><spage>51</spage><epage>66</epage><pages>51-66</pages><issn>1547-2450</issn><eissn>1547-2442</eissn><abstract>Despite its ever-increasing computing power, dynamic origin-destination (OD) estimation in congested networks remains troublesome. In previous research, we have shown that an unbiased estimation requires the calculation of the sensitivity of the link flows to all origin-destination flows, in order to incorporate the effects of congestion spillback. This is, however, computationally infeasible for large-scale networks. To overcome this issue, we propose a hierarchical approach for off-line application that decomposes the dynamic OD estimation procedure in space. The main idea is to perform a more accurate dynamic OD estimation only on subareas where there is congestion spillback. The output of this estimation is then used as input for the OD estimation on the whole network. This hierarchical approach solves many practical and theoretical limitations of traditional OD estimation methods. The main advantage is that different OD estimation method can be used for different parts of the network as necessary. This allows applying more advanced and accurate, but more time-consuming, methods only where necessary. The hierarchical approach is tested on a study network and on a real network. In both cases the proposed methodology performs better than traditional OD estimation approaches, indicating its merit.</abstract><cop>Philadelphia</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/15472450.2013.773249</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1547-2450
ispartof Journal of intelligent transportation systems, 2014-01, Vol.18 (1), p.51-66
issn 1547-2450
1547-2442
language eng
recordid cdi_proquest_miscellaneous_1520943679
source Taylor and Francis Science and Technology Collection
subjects Computation
Congestion
Congestion Spillback
Decomposition
Dynamic Demand Estimation
Dynamic Network Loading
Dynamics
Estimating techniques
Large-Scale Networks
Link Transmission Model
Links
Mathematical analysis
Matrix
Networks
Traffic congestion
Transportation systems
title Dynamic Origin-Destination Matrix Estimation on Large-Scale Congested Networks Using a Hierarchical Decomposition Scheme
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A05%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Origin-Destination%20Matrix%20Estimation%20on%20Large-Scale%20Congested%20Networks%20Using%20a%20Hierarchical%20Decomposition%20Scheme&rft.jtitle=Journal%20of%20intelligent%20transportation%20systems&rft.au=Frederix,%20Rodric&rft.date=2014-01-02&rft.volume=18&rft.issue=1&rft.spage=51&rft.epage=66&rft.pages=51-66&rft.issn=1547-2450&rft.eissn=1547-2442&rft_id=info:doi/10.1080/15472450.2013.773249&rft_dat=%3Cproquest_cross%3E1520943679%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-d6839b89857eefbe3e19d831e7999191c80cbdfb43cef7033d0736d7b0a578a63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1506973889&rft_id=info:pmid/&rfr_iscdi=true