Loading…
Dynamic Origin-Destination Matrix Estimation on Large-Scale Congested Networks Using a Hierarchical Decomposition Scheme
Despite its ever-increasing computing power, dynamic origin-destination (OD) estimation in congested networks remains troublesome. In previous research, we have shown that an unbiased estimation requires the calculation of the sensitivity of the link flows to all origin-destination flows, in order t...
Saved in:
Published in: | Journal of intelligent transportation systems 2014-01, Vol.18 (1), p.51-66 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c368t-d6839b89857eefbe3e19d831e7999191c80cbdfb43cef7033d0736d7b0a578a63 |
---|---|
cites | cdi_FETCH-LOGICAL-c368t-d6839b89857eefbe3e19d831e7999191c80cbdfb43cef7033d0736d7b0a578a63 |
container_end_page | 66 |
container_issue | 1 |
container_start_page | 51 |
container_title | Journal of intelligent transportation systems |
container_volume | 18 |
creator | Frederix, Rodric Viti, Francesco Himpe, Willem W. E. Tampère, Chris M. J. |
description | Despite its ever-increasing computing power, dynamic origin-destination (OD) estimation in congested networks remains troublesome. In previous research, we have shown that an unbiased estimation requires the calculation of the sensitivity of the link flows to all origin-destination flows, in order to incorporate the effects of congestion spillback. This is, however, computationally infeasible for large-scale networks. To overcome this issue, we propose a hierarchical approach for off-line application that decomposes the dynamic OD estimation procedure in space. The main idea is to perform a more accurate dynamic OD estimation only on subareas where there is congestion spillback. The output of this estimation is then used as input for the OD estimation on the whole network. This hierarchical approach solves many practical and theoretical limitations of traditional OD estimation methods. The main advantage is that different OD estimation method can be used for different parts of the network as necessary. This allows applying more advanced and accurate, but more time-consuming, methods only where necessary. The hierarchical approach is tested on a study network and on a real network. In both cases the proposed methodology performs better than traditional OD estimation approaches, indicating its merit. |
doi_str_mv | 10.1080/15472450.2013.773249 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1520943679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1520943679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-d6839b89857eefbe3e19d831e7999191c80cbdfb43cef7033d0736d7b0a578a63</originalsourceid><addsrcrecordid>eNp9kUFP3DAQhaMKpMLCP-BgqZdesh3HSWyfqmqXFqQtewDOluNMFtPEXuysYP99vYT2wAFppBk9ffM0mpdlFxTmFAR8o1XJi7KCeQGUzTlnRSk_ZScHOS_Ksjj6P1fwOTuN8RGg4ALgJHtZ7p0erCHrYDfW5UuMo3V6tN6R33oM9oVcJmWYlFQrHTaY3xrdI1l4t0k8tuQGx2cf_kRyH63bEE2uLAYdzINNIFmi8cPWR_tqcmsecMCz7LjTfcTztz7L7n9e3i2u8tX61_Xixyo3rBZj3taCyUZIUXHErkGGVLaCUeRSSiqpEWCatmtKZrDjwFgLnNUtb0BXXOiazbKvk-82-KddulYNNhrse-3Q76KiVQGyZDWXCf3yDn30u-DSdYmCWnImxIEqJ8oEH2PATm1D-k_YKwrqEIf6F4c6xKGmONLa92nNus6HQad39a0a9b73oQvaGRsV-9DhL9wnkeM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506973889</pqid></control><display><type>article</type><title>Dynamic Origin-Destination Matrix Estimation on Large-Scale Congested Networks Using a Hierarchical Decomposition Scheme</title><source>Taylor and Francis Science and Technology Collection</source><creator>Frederix, Rodric ; Viti, Francesco ; Himpe, Willem W. E. ; Tampère, Chris M. J.</creator><creatorcontrib>Frederix, Rodric ; Viti, Francesco ; Himpe, Willem W. E. ; Tampère, Chris M. J.</creatorcontrib><description>Despite its ever-increasing computing power, dynamic origin-destination (OD) estimation in congested networks remains troublesome. In previous research, we have shown that an unbiased estimation requires the calculation of the sensitivity of the link flows to all origin-destination flows, in order to incorporate the effects of congestion spillback. This is, however, computationally infeasible for large-scale networks. To overcome this issue, we propose a hierarchical approach for off-line application that decomposes the dynamic OD estimation procedure in space. The main idea is to perform a more accurate dynamic OD estimation only on subareas where there is congestion spillback. The output of this estimation is then used as input for the OD estimation on the whole network. This hierarchical approach solves many practical and theoretical limitations of traditional OD estimation methods. The main advantage is that different OD estimation method can be used for different parts of the network as necessary. This allows applying more advanced and accurate, but more time-consuming, methods only where necessary. The hierarchical approach is tested on a study network and on a real network. In both cases the proposed methodology performs better than traditional OD estimation approaches, indicating its merit.</description><identifier>ISSN: 1547-2450</identifier><identifier>EISSN: 1547-2442</identifier><identifier>DOI: 10.1080/15472450.2013.773249</identifier><language>eng</language><publisher>Philadelphia: Taylor & Francis Group</publisher><subject>Computation ; Congestion ; Congestion Spillback ; Decomposition ; Dynamic Demand Estimation ; Dynamic Network Loading ; Dynamics ; Estimating techniques ; Large-Scale Networks ; Link Transmission Model ; Links ; Mathematical analysis ; Matrix ; Networks ; Traffic congestion ; Transportation systems</subject><ispartof>Journal of intelligent transportation systems, 2014-01, Vol.18 (1), p.51-66</ispartof><rights>Copyright Taylor & Francis Group, LLC 2014</rights><rights>Copyright Taylor & Francis Ltd. 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-d6839b89857eefbe3e19d831e7999191c80cbdfb43cef7033d0736d7b0a578a63</citedby><cites>FETCH-LOGICAL-c368t-d6839b89857eefbe3e19d831e7999191c80cbdfb43cef7033d0736d7b0a578a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Frederix, Rodric</creatorcontrib><creatorcontrib>Viti, Francesco</creatorcontrib><creatorcontrib>Himpe, Willem W. E.</creatorcontrib><creatorcontrib>Tampère, Chris M. J.</creatorcontrib><title>Dynamic Origin-Destination Matrix Estimation on Large-Scale Congested Networks Using a Hierarchical Decomposition Scheme</title><title>Journal of intelligent transportation systems</title><description>Despite its ever-increasing computing power, dynamic origin-destination (OD) estimation in congested networks remains troublesome. In previous research, we have shown that an unbiased estimation requires the calculation of the sensitivity of the link flows to all origin-destination flows, in order to incorporate the effects of congestion spillback. This is, however, computationally infeasible for large-scale networks. To overcome this issue, we propose a hierarchical approach for off-line application that decomposes the dynamic OD estimation procedure in space. The main idea is to perform a more accurate dynamic OD estimation only on subareas where there is congestion spillback. The output of this estimation is then used as input for the OD estimation on the whole network. This hierarchical approach solves many practical and theoretical limitations of traditional OD estimation methods. The main advantage is that different OD estimation method can be used for different parts of the network as necessary. This allows applying more advanced and accurate, but more time-consuming, methods only where necessary. The hierarchical approach is tested on a study network and on a real network. In both cases the proposed methodology performs better than traditional OD estimation approaches, indicating its merit.</description><subject>Computation</subject><subject>Congestion</subject><subject>Congestion Spillback</subject><subject>Decomposition</subject><subject>Dynamic Demand Estimation</subject><subject>Dynamic Network Loading</subject><subject>Dynamics</subject><subject>Estimating techniques</subject><subject>Large-Scale Networks</subject><subject>Link Transmission Model</subject><subject>Links</subject><subject>Mathematical analysis</subject><subject>Matrix</subject><subject>Networks</subject><subject>Traffic congestion</subject><subject>Transportation systems</subject><issn>1547-2450</issn><issn>1547-2442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kUFP3DAQhaMKpMLCP-BgqZdesh3HSWyfqmqXFqQtewDOluNMFtPEXuysYP99vYT2wAFppBk9ffM0mpdlFxTmFAR8o1XJi7KCeQGUzTlnRSk_ZScHOS_Ksjj6P1fwOTuN8RGg4ALgJHtZ7p0erCHrYDfW5UuMo3V6tN6R33oM9oVcJmWYlFQrHTaY3xrdI1l4t0k8tuQGx2cf_kRyH63bEE2uLAYdzINNIFmi8cPWR_tqcmsecMCz7LjTfcTztz7L7n9e3i2u8tX61_Xixyo3rBZj3taCyUZIUXHErkGGVLaCUeRSSiqpEWCatmtKZrDjwFgLnNUtb0BXXOiazbKvk-82-KddulYNNhrse-3Q76KiVQGyZDWXCf3yDn30u-DSdYmCWnImxIEqJ8oEH2PATm1D-k_YKwrqEIf6F4c6xKGmONLa92nNus6HQad39a0a9b73oQvaGRsV-9DhL9wnkeM</recordid><startdate>20140102</startdate><enddate>20140102</enddate><creator>Frederix, Rodric</creator><creator>Viti, Francesco</creator><creator>Himpe, Willem W. E.</creator><creator>Tampère, Chris M. J.</creator><general>Taylor & Francis Group</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140102</creationdate><title>Dynamic Origin-Destination Matrix Estimation on Large-Scale Congested Networks Using a Hierarchical Decomposition Scheme</title><author>Frederix, Rodric ; Viti, Francesco ; Himpe, Willem W. E. ; Tampère, Chris M. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-d6839b89857eefbe3e19d831e7999191c80cbdfb43cef7033d0736d7b0a578a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Computation</topic><topic>Congestion</topic><topic>Congestion Spillback</topic><topic>Decomposition</topic><topic>Dynamic Demand Estimation</topic><topic>Dynamic Network Loading</topic><topic>Dynamics</topic><topic>Estimating techniques</topic><topic>Large-Scale Networks</topic><topic>Link Transmission Model</topic><topic>Links</topic><topic>Mathematical analysis</topic><topic>Matrix</topic><topic>Networks</topic><topic>Traffic congestion</topic><topic>Transportation systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frederix, Rodric</creatorcontrib><creatorcontrib>Viti, Francesco</creatorcontrib><creatorcontrib>Himpe, Willem W. E.</creatorcontrib><creatorcontrib>Tampère, Chris M. J.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frederix, Rodric</au><au>Viti, Francesco</au><au>Himpe, Willem W. E.</au><au>Tampère, Chris M. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Origin-Destination Matrix Estimation on Large-Scale Congested Networks Using a Hierarchical Decomposition Scheme</atitle><jtitle>Journal of intelligent transportation systems</jtitle><date>2014-01-02</date><risdate>2014</risdate><volume>18</volume><issue>1</issue><spage>51</spage><epage>66</epage><pages>51-66</pages><issn>1547-2450</issn><eissn>1547-2442</eissn><abstract>Despite its ever-increasing computing power, dynamic origin-destination (OD) estimation in congested networks remains troublesome. In previous research, we have shown that an unbiased estimation requires the calculation of the sensitivity of the link flows to all origin-destination flows, in order to incorporate the effects of congestion spillback. This is, however, computationally infeasible for large-scale networks. To overcome this issue, we propose a hierarchical approach for off-line application that decomposes the dynamic OD estimation procedure in space. The main idea is to perform a more accurate dynamic OD estimation only on subareas where there is congestion spillback. The output of this estimation is then used as input for the OD estimation on the whole network. This hierarchical approach solves many practical and theoretical limitations of traditional OD estimation methods. The main advantage is that different OD estimation method can be used for different parts of the network as necessary. This allows applying more advanced and accurate, but more time-consuming, methods only where necessary. The hierarchical approach is tested on a study network and on a real network. In both cases the proposed methodology performs better than traditional OD estimation approaches, indicating its merit.</abstract><cop>Philadelphia</cop><pub>Taylor & Francis Group</pub><doi>10.1080/15472450.2013.773249</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1547-2450 |
ispartof | Journal of intelligent transportation systems, 2014-01, Vol.18 (1), p.51-66 |
issn | 1547-2450 1547-2442 |
language | eng |
recordid | cdi_proquest_miscellaneous_1520943679 |
source | Taylor and Francis Science and Technology Collection |
subjects | Computation Congestion Congestion Spillback Decomposition Dynamic Demand Estimation Dynamic Network Loading Dynamics Estimating techniques Large-Scale Networks Link Transmission Model Links Mathematical analysis Matrix Networks Traffic congestion Transportation systems |
title | Dynamic Origin-Destination Matrix Estimation on Large-Scale Congested Networks Using a Hierarchical Decomposition Scheme |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T10%3A05%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Origin-Destination%20Matrix%20Estimation%20on%20Large-Scale%20Congested%20Networks%20Using%20a%20Hierarchical%20Decomposition%20Scheme&rft.jtitle=Journal%20of%20intelligent%20transportation%20systems&rft.au=Frederix,%20Rodric&rft.date=2014-01-02&rft.volume=18&rft.issue=1&rft.spage=51&rft.epage=66&rft.pages=51-66&rft.issn=1547-2450&rft.eissn=1547-2442&rft_id=info:doi/10.1080/15472450.2013.773249&rft_dat=%3Cproquest_cross%3E1520943679%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-d6839b89857eefbe3e19d831e7999191c80cbdfb43cef7033d0736d7b0a578a63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1506973889&rft_id=info:pmid/&rfr_iscdi=true |