Loading…

All-Fiber-Integrated High-Power Supercontinuum Sources Based on Multi-Core Photonic Crystal Fibers

The obstacles of power scaling the supercontinuum (SC) source based on single-core photonic crystal fiber (PCF) are analyzed. The combination of high-power fiber lasers and multi-core PCFs would be a feasible method to obtain an all-fiber-integrated high-power broadband SC source (covering visible r...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of selected topics in quantum electronics 2014-09, Vol.20 (5), p.64-71
Main Authors: Chen, Hongwei, Wei, Huifeng, Liu, Tong, Zhou, Xuanfeng, Yan, Peiguang, Chen, Zilun, Chen, Shengping, Li, Jinyan, Hou, Jing, Lu, Qisheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c377t-ad84d9b4dc4421364fd59c3578e3b4241f336592e96b9433394b3e5a14c2c38a3
cites cdi_FETCH-LOGICAL-c377t-ad84d9b4dc4421364fd59c3578e3b4241f336592e96b9433394b3e5a14c2c38a3
container_end_page 71
container_issue 5
container_start_page 64
container_title IEEE journal of selected topics in quantum electronics
container_volume 20
creator Chen, Hongwei
Wei, Huifeng
Liu, Tong
Zhou, Xuanfeng
Yan, Peiguang
Chen, Zilun
Chen, Shengping
Li, Jinyan
Hou, Jing
Lu, Qisheng
description The obstacles of power scaling the supercontinuum (SC) source based on single-core photonic crystal fiber (PCF) are analyzed. The combination of high-power fiber lasers and multi-core PCFs would be a feasible method to obtain an all-fiber-integrated high-power broadband SC source (covering visible range). In this paper, we present a comprehensive study of high-power SC generation in multi-core PCFs. Comparative experiments are performed by using a high-power pulse-repetition-rate-tunable picosecond fiber laser to pump two kinds of home-made seven-core PCFs. The influences of PCF structure (fiber dispersion property) and pulse repetition rate (pulse peak power) on the SC generation in multi-core PCFs are investigated in detail. When the picosecond fiber laser at a pulse repetition rate of 1.9 GHz is adopted as the pump, 116 W SC spanning from 800 to 1700 nm is generated in 1# seven-core PCF. Also 64 W visible SC spanning at least 500-1700 nm is demonstrated in 2# seven-core PCF at a pump pulse repetition rate of 480 MHz. The potential of extending the spectral range and scaling the output power for the SC source based on multi-core PCFs are analyzed and discussed.
doi_str_mv 10.1109/JSTQE.2014.2304136
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1520944564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6730666</ieee_id><sourcerecordid>1520944564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-ad84d9b4dc4421364fd59c3578e3b4241f336592e96b9433394b3e5a14c2c38a3</originalsourceid><addsrcrecordid>eNpdkMtOwzAQRSMEEuXxA7CJxIaNi-0ZO8kSKp4CUVSQ2EWOMy1BaVzsRIi_x6WIBauZxblXMydJjgQfC8GLs7vZ89PlWHKBYwkcBeitZCSUyhkqlNtx51nGpOavu8leCO-c8xxzPkqq87ZlV01Fnt12PS286alOb5rFG5u6T_LpbFiRt67rm24YlunMDd5SSC9MiJzr0oeh7Rs2cZ7S6ZvrXdfYdOK_Qm_a9Kc3HCQ7c9MGOvyd-8nL1eXz5IbdP17fTs7vmYUs65mpc6yLCmuLKOMDOK9VYUFlOUGFEsUcQKtCUqGrAgGgwApIGYFWWsgN7Cenm96Vdx8Dhb5cNsFS25qO3BBKoSQvEJXGiJ78Q9_jX128LlJcgeZcQKTkhrLeheBpXq58szT-qxS8XGsvf7SXa-3lr_YYOt6EGiL6C-gMuNYavgHLP31g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1505360013</pqid></control><display><type>article</type><title>All-Fiber-Integrated High-Power Supercontinuum Sources Based on Multi-Core Photonic Crystal Fibers</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Chen, Hongwei ; Wei, Huifeng ; Liu, Tong ; Zhou, Xuanfeng ; Yan, Peiguang ; Chen, Zilun ; Chen, Shengping ; Li, Jinyan ; Hou, Jing ; Lu, Qisheng</creator><creatorcontrib>Chen, Hongwei ; Wei, Huifeng ; Liu, Tong ; Zhou, Xuanfeng ; Yan, Peiguang ; Chen, Zilun ; Chen, Shengping ; Li, Jinyan ; Hou, Jing ; Lu, Qisheng</creatorcontrib><description>The obstacles of power scaling the supercontinuum (SC) source based on single-core photonic crystal fiber (PCF) are analyzed. The combination of high-power fiber lasers and multi-core PCFs would be a feasible method to obtain an all-fiber-integrated high-power broadband SC source (covering visible range). In this paper, we present a comprehensive study of high-power SC generation in multi-core PCFs. Comparative experiments are performed by using a high-power pulse-repetition-rate-tunable picosecond fiber laser to pump two kinds of home-made seven-core PCFs. The influences of PCF structure (fiber dispersion property) and pulse repetition rate (pulse peak power) on the SC generation in multi-core PCFs are investigated in detail. When the picosecond fiber laser at a pulse repetition rate of 1.9 GHz is adopted as the pump, 116 W SC spanning from 800 to 1700 nm is generated in 1# seven-core PCF. Also 64 W visible SC spanning at least 500-1700 nm is demonstrated in 2# seven-core PCF at a pump pulse repetition rate of 480 MHz. The potential of extending the spectral range and scaling the output power for the SC source based on multi-core PCFs are analyzed and discussed.</description><identifier>ISSN: 1077-260X</identifier><identifier>EISSN: 1558-4542</identifier><identifier>DOI: 10.1109/JSTQE.2014.2304136</identifier><identifier>CODEN: IJSQEN</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Broadband ; Crystal fibers ; Dispersions ; Fiber laser ; Fiber lasers ; fiber nonlinear optics ; Laser excitation ; multi-core photonic crystal fiber ; Optical fiber amplifiers ; Optical fiber dispersion ; optical fibers ; Photonic crystals ; Pulse repetition rate ; Pump lasers ; Pumps ; Spectra ; supercontinuum generation</subject><ispartof>IEEE journal of selected topics in quantum electronics, 2014-09, Vol.20 (5), p.64-71</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep/Oct 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-ad84d9b4dc4421364fd59c3578e3b4241f336592e96b9433394b3e5a14c2c38a3</citedby><cites>FETCH-LOGICAL-c377t-ad84d9b4dc4421364fd59c3578e3b4241f336592e96b9433394b3e5a14c2c38a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6730666$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Chen, Hongwei</creatorcontrib><creatorcontrib>Wei, Huifeng</creatorcontrib><creatorcontrib>Liu, Tong</creatorcontrib><creatorcontrib>Zhou, Xuanfeng</creatorcontrib><creatorcontrib>Yan, Peiguang</creatorcontrib><creatorcontrib>Chen, Zilun</creatorcontrib><creatorcontrib>Chen, Shengping</creatorcontrib><creatorcontrib>Li, Jinyan</creatorcontrib><creatorcontrib>Hou, Jing</creatorcontrib><creatorcontrib>Lu, Qisheng</creatorcontrib><title>All-Fiber-Integrated High-Power Supercontinuum Sources Based on Multi-Core Photonic Crystal Fibers</title><title>IEEE journal of selected topics in quantum electronics</title><addtitle>JSTQE</addtitle><description>The obstacles of power scaling the supercontinuum (SC) source based on single-core photonic crystal fiber (PCF) are analyzed. The combination of high-power fiber lasers and multi-core PCFs would be a feasible method to obtain an all-fiber-integrated high-power broadband SC source (covering visible range). In this paper, we present a comprehensive study of high-power SC generation in multi-core PCFs. Comparative experiments are performed by using a high-power pulse-repetition-rate-tunable picosecond fiber laser to pump two kinds of home-made seven-core PCFs. The influences of PCF structure (fiber dispersion property) and pulse repetition rate (pulse peak power) on the SC generation in multi-core PCFs are investigated in detail. When the picosecond fiber laser at a pulse repetition rate of 1.9 GHz is adopted as the pump, 116 W SC spanning from 800 to 1700 nm is generated in 1# seven-core PCF. Also 64 W visible SC spanning at least 500-1700 nm is demonstrated in 2# seven-core PCF at a pump pulse repetition rate of 480 MHz. The potential of extending the spectral range and scaling the output power for the SC source based on multi-core PCFs are analyzed and discussed.</description><subject>Broadband</subject><subject>Crystal fibers</subject><subject>Dispersions</subject><subject>Fiber laser</subject><subject>Fiber lasers</subject><subject>fiber nonlinear optics</subject><subject>Laser excitation</subject><subject>multi-core photonic crystal fiber</subject><subject>Optical fiber amplifiers</subject><subject>Optical fiber dispersion</subject><subject>optical fibers</subject><subject>Photonic crystals</subject><subject>Pulse repetition rate</subject><subject>Pump lasers</subject><subject>Pumps</subject><subject>Spectra</subject><subject>supercontinuum generation</subject><issn>1077-260X</issn><issn>1558-4542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkMtOwzAQRSMEEuXxA7CJxIaNi-0ZO8kSKp4CUVSQ2EWOMy1BaVzsRIi_x6WIBauZxblXMydJjgQfC8GLs7vZ89PlWHKBYwkcBeitZCSUyhkqlNtx51nGpOavu8leCO-c8xxzPkqq87ZlV01Fnt12PS286alOb5rFG5u6T_LpbFiRt67rm24YlunMDd5SSC9MiJzr0oeh7Rs2cZ7S6ZvrXdfYdOK_Qm_a9Kc3HCQ7c9MGOvyd-8nL1eXz5IbdP17fTs7vmYUs65mpc6yLCmuLKOMDOK9VYUFlOUGFEsUcQKtCUqGrAgGgwApIGYFWWsgN7Cenm96Vdx8Dhb5cNsFS25qO3BBKoSQvEJXGiJ78Q9_jX128LlJcgeZcQKTkhrLeheBpXq58szT-qxS8XGsvf7SXa-3lr_YYOt6EGiL6C-gMuNYavgHLP31g</recordid><startdate>201409</startdate><enddate>201409</enddate><creator>Chen, Hongwei</creator><creator>Wei, Huifeng</creator><creator>Liu, Tong</creator><creator>Zhou, Xuanfeng</creator><creator>Yan, Peiguang</creator><creator>Chen, Zilun</creator><creator>Chen, Shengping</creator><creator>Li, Jinyan</creator><creator>Hou, Jing</creator><creator>Lu, Qisheng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201409</creationdate><title>All-Fiber-Integrated High-Power Supercontinuum Sources Based on Multi-Core Photonic Crystal Fibers</title><author>Chen, Hongwei ; Wei, Huifeng ; Liu, Tong ; Zhou, Xuanfeng ; Yan, Peiguang ; Chen, Zilun ; Chen, Shengping ; Li, Jinyan ; Hou, Jing ; Lu, Qisheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-ad84d9b4dc4421364fd59c3578e3b4241f336592e96b9433394b3e5a14c2c38a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Broadband</topic><topic>Crystal fibers</topic><topic>Dispersions</topic><topic>Fiber laser</topic><topic>Fiber lasers</topic><topic>fiber nonlinear optics</topic><topic>Laser excitation</topic><topic>multi-core photonic crystal fiber</topic><topic>Optical fiber amplifiers</topic><topic>Optical fiber dispersion</topic><topic>optical fibers</topic><topic>Photonic crystals</topic><topic>Pulse repetition rate</topic><topic>Pump lasers</topic><topic>Pumps</topic><topic>Spectra</topic><topic>supercontinuum generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Hongwei</creatorcontrib><creatorcontrib>Wei, Huifeng</creatorcontrib><creatorcontrib>Liu, Tong</creatorcontrib><creatorcontrib>Zhou, Xuanfeng</creatorcontrib><creatorcontrib>Yan, Peiguang</creatorcontrib><creatorcontrib>Chen, Zilun</creatorcontrib><creatorcontrib>Chen, Shengping</creatorcontrib><creatorcontrib>Li, Jinyan</creatorcontrib><creatorcontrib>Hou, Jing</creatorcontrib><creatorcontrib>Lu, Qisheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE journal of selected topics in quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Hongwei</au><au>Wei, Huifeng</au><au>Liu, Tong</au><au>Zhou, Xuanfeng</au><au>Yan, Peiguang</au><au>Chen, Zilun</au><au>Chen, Shengping</au><au>Li, Jinyan</au><au>Hou, Jing</au><au>Lu, Qisheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>All-Fiber-Integrated High-Power Supercontinuum Sources Based on Multi-Core Photonic Crystal Fibers</atitle><jtitle>IEEE journal of selected topics in quantum electronics</jtitle><stitle>JSTQE</stitle><date>2014-09</date><risdate>2014</risdate><volume>20</volume><issue>5</issue><spage>64</spage><epage>71</epage><pages>64-71</pages><issn>1077-260X</issn><eissn>1558-4542</eissn><coden>IJSQEN</coden><abstract>The obstacles of power scaling the supercontinuum (SC) source based on single-core photonic crystal fiber (PCF) are analyzed. The combination of high-power fiber lasers and multi-core PCFs would be a feasible method to obtain an all-fiber-integrated high-power broadband SC source (covering visible range). In this paper, we present a comprehensive study of high-power SC generation in multi-core PCFs. Comparative experiments are performed by using a high-power pulse-repetition-rate-tunable picosecond fiber laser to pump two kinds of home-made seven-core PCFs. The influences of PCF structure (fiber dispersion property) and pulse repetition rate (pulse peak power) on the SC generation in multi-core PCFs are investigated in detail. When the picosecond fiber laser at a pulse repetition rate of 1.9 GHz is adopted as the pump, 116 W SC spanning from 800 to 1700 nm is generated in 1# seven-core PCF. Also 64 W visible SC spanning at least 500-1700 nm is demonstrated in 2# seven-core PCF at a pump pulse repetition rate of 480 MHz. The potential of extending the spectral range and scaling the output power for the SC source based on multi-core PCFs are analyzed and discussed.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTQE.2014.2304136</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1077-260X
ispartof IEEE journal of selected topics in quantum electronics, 2014-09, Vol.20 (5), p.64-71
issn 1077-260X
1558-4542
language eng
recordid cdi_proquest_miscellaneous_1520944564
source IEEE Electronic Library (IEL) Journals
subjects Broadband
Crystal fibers
Dispersions
Fiber laser
Fiber lasers
fiber nonlinear optics
Laser excitation
multi-core photonic crystal fiber
Optical fiber amplifiers
Optical fiber dispersion
optical fibers
Photonic crystals
Pulse repetition rate
Pump lasers
Pumps
Spectra
supercontinuum generation
title All-Fiber-Integrated High-Power Supercontinuum Sources Based on Multi-Core Photonic Crystal Fibers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A54%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=All-Fiber-Integrated%20High-Power%20Supercontinuum%20Sources%20Based%20on%20Multi-Core%20Photonic%20Crystal%20Fibers&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20quantum%20electronics&rft.au=Chen,%20Hongwei&rft.date=2014-09&rft.volume=20&rft.issue=5&rft.spage=64&rft.epage=71&rft.pages=64-71&rft.issn=1077-260X&rft.eissn=1558-4542&rft.coden=IJSQEN&rft_id=info:doi/10.1109/JSTQE.2014.2304136&rft_dat=%3Cproquest_cross%3E1520944564%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c377t-ad84d9b4dc4421364fd59c3578e3b4241f336592e96b9433394b3e5a14c2c38a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1505360013&rft_id=info:pmid/&rft_ieee_id=6730666&rfr_iscdi=true