Loading…
Reliable, Efficient, and Power Optimized Control-Channel Selection Scheme for Cognitive Radio Networks
This paper presents a centralized control-channel selection scheme for cognitive radio networks (CRNs) by exploiting the variation in the spectrum across capacity, occupancy, and error rate. We address the fundamental challenges in the design of the control-channel for CRNs: (1) random licensed user...
Saved in:
Published in: | Mathematical problems in engineering 2013-01, Vol.2013 (2013), p.1-14 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a centralized control-channel selection scheme for cognitive radio networks (CRNs) by exploiting the variation in the spectrum across capacity, occupancy, and error rate. We address the fundamental challenges in the design of the control-channel for CRNs: (1) random licensed users (LUs) activity and (2) the economical and vulnerability concerns for a dedicated control-channel. We develop a knapsack problem (KP) based reliable, efficient, and power optimized (REPO) control-channel selection scheme with an optimal data rate, bit error rate (BER), and idle time. Moreover, we introduce the concept of the backup channels in the context of control-channel selection, which assists the CRs to quickly move on to the next stable channel in order to cater for the sudden appearance of LUs. Based on the KP and its dynamic programming solution, simulation results show that the proposed scheme is highly adaptable and resilient to random LU activity. The REPO scheme reduces collisions with the LUs, minimizes the alternate channel selection time, and reduces the bit error rate (BER). Moreover, it reduces the power consumed during channel switching and provides a performance, that is, competitive with those schemes that are using a static control-channel for the management of control traffic in CRNs. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2013/567581 |