Loading…
Magnetic Nanoparticles: A Subject for Both Fundamental Research and Applications
Single domain magnetic nanoparticles (MNPs) have been a vivid subject of intense research for the last fifty years. Preparation of magnetic nanoparticles and nanostructures has been achieved by both bottom-up and top-down approaches. Single domain MNPs show Néel-Brown-like relaxation. The Stoner-Woh...
Saved in:
Published in: | Journal of nanomaterials 2013-01, Vol.2013 (2013), p.1-22 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a462t-95dd32ac934d937c162a7ad77a0c843d1406236a9b404f4c9ebcf57ab647e81f3 |
---|---|
cites | cdi_FETCH-LOGICAL-a462t-95dd32ac934d937c162a7ad77a0c843d1406236a9b404f4c9ebcf57ab647e81f3 |
container_end_page | 22 |
container_issue | 2013 |
container_start_page | 1 |
container_title | Journal of nanomaterials |
container_volume | 2013 |
creator | Petracic, Oleg Kleemann, Wolfgang Barman, Anjan Bedanta, S. Seki, Takeshi |
description | Single domain magnetic nanoparticles (MNPs) have been a vivid subject of intense research for the last fifty years. Preparation of magnetic nanoparticles and nanostructures has been achieved by both bottom-up and top-down approaches. Single domain MNPs show Néel-Brown-like relaxation. The Stoner-Wohlfarth model describes the angular dependence of the switching of the magnetization of a single domain particle in applied magnetic fields. By varying the spacing between the particles, the inter-particle interactions can be tuned. This leads to various supermagnetic states such as superparamagnetism, superspin glass, and superferromagnetism. Recently, the study of the magnetization dynamics of such single domain MNPs has attracted particular attention, and observations of various collective spin wave modes in patterned nanomagnet arrays have opened new avenues for on-chip microwave communications. MNPs have the potential for various other applications such as future recording media and in medicine. We will discuss the various aspects involved in the research on MNPs. |
doi_str_mv | 10.1155/2013/952540 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1520945195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3456006121</sourcerecordid><originalsourceid>FETCH-LOGICAL-a462t-95dd32ac934d937c162a7ad77a0c843d1406236a9b404f4c9ebcf57ab647e81f3</originalsourceid><addsrcrecordid>eNqF0E1LxDAQBuAiCq6rJ-8S8CJK3SRNmsbburgqrB_4cS7TNHW7dJOatIj_3iwVES-e5j08zAxvFB0SfE4I5xOKSTKRnHKGt6IRSTMRM0Ll9k8meDfa836FMePBjaLHO3gzuqsVugdjW3AhNtpfoCl67ouVVh2qrEOXtluieW9KWGvTQYOetNfg1BKBKdG0bZtaQVdb4_ejnQoarw--5zh6nV-9zG7ixcP17Wy6iIGltIslL8uEgpIJK2UiFEkpCCiFAKwylpSE4ZQmKciCYVYxJXWhKi6gSJnQGamScXQy7G2dfe-17_J17ZVuGjDa9j4nnGLJOJE80OM_dGV7Z8J3OUlxuI6xYEGdDUo5673TVd66eg3uMyc437Sbb9rNh3aDPh30sg6lfNT_4KMB60B0Bb8wzhgWyRejG4F2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1609370074</pqid></control><display><type>article</type><title>Magnetic Nanoparticles: A Subject for Both Fundamental Research and Applications</title><source>Wiley Online Library website</source><source>Publicly Available Content (ProQuest)</source><creator>Petracic, Oleg ; Kleemann, Wolfgang ; Barman, Anjan ; Bedanta, S. ; Seki, Takeshi</creator><contributor>Mago, Gaurav</contributor><creatorcontrib>Petracic, Oleg ; Kleemann, Wolfgang ; Barman, Anjan ; Bedanta, S. ; Seki, Takeshi ; Mago, Gaurav</creatorcontrib><description>Single domain magnetic nanoparticles (MNPs) have been a vivid subject of intense research for the last fifty years. Preparation of magnetic nanoparticles and nanostructures has been achieved by both bottom-up and top-down approaches. Single domain MNPs show Néel-Brown-like relaxation. The Stoner-Wohlfarth model describes the angular dependence of the switching of the magnetization of a single domain particle in applied magnetic fields. By varying the spacing between the particles, the inter-particle interactions can be tuned. This leads to various supermagnetic states such as superparamagnetism, superspin glass, and superferromagnetism. Recently, the study of the magnetization dynamics of such single domain MNPs has attracted particular attention, and observations of various collective spin wave modes in patterned nanomagnet arrays have opened new avenues for on-chip microwave communications. MNPs have the potential for various other applications such as future recording media and in medicine. We will discuss the various aspects involved in the research on MNPs.</description><identifier>ISSN: 1687-4110</identifier><identifier>EISSN: 1687-4129</identifier><identifier>DOI: 10.1155/2013/952540</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Arrays ; Dynamic tests ; Magnetism ; Magnetization ; Mathematical models ; Microwaves ; Nanomaterials ; Nanoparticles ; Nanostructure ; NMR ; Nuclear magnetic resonance ; R&D ; Research & development ; Spin waves</subject><ispartof>Journal of nanomaterials, 2013-01, Vol.2013 (2013), p.1-22</ispartof><rights>Copyright © 2013 S. Bedanta et al.</rights><rights>Copyright © 2013 S. Bedanta et al. S. Bedanta et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a462t-95dd32ac934d937c162a7ad77a0c843d1406236a9b404f4c9ebcf57ab647e81f3</citedby><cites>FETCH-LOGICAL-a462t-95dd32ac934d937c162a7ad77a0c843d1406236a9b404f4c9ebcf57ab647e81f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1609370074/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1609370074?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids></links><search><contributor>Mago, Gaurav</contributor><creatorcontrib>Petracic, Oleg</creatorcontrib><creatorcontrib>Kleemann, Wolfgang</creatorcontrib><creatorcontrib>Barman, Anjan</creatorcontrib><creatorcontrib>Bedanta, S.</creatorcontrib><creatorcontrib>Seki, Takeshi</creatorcontrib><title>Magnetic Nanoparticles: A Subject for Both Fundamental Research and Applications</title><title>Journal of nanomaterials</title><description>Single domain magnetic nanoparticles (MNPs) have been a vivid subject of intense research for the last fifty years. Preparation of magnetic nanoparticles and nanostructures has been achieved by both bottom-up and top-down approaches. Single domain MNPs show Néel-Brown-like relaxation. The Stoner-Wohlfarth model describes the angular dependence of the switching of the magnetization of a single domain particle in applied magnetic fields. By varying the spacing between the particles, the inter-particle interactions can be tuned. This leads to various supermagnetic states such as superparamagnetism, superspin glass, and superferromagnetism. Recently, the study of the magnetization dynamics of such single domain MNPs has attracted particular attention, and observations of various collective spin wave modes in patterned nanomagnet arrays have opened new avenues for on-chip microwave communications. MNPs have the potential for various other applications such as future recording media and in medicine. We will discuss the various aspects involved in the research on MNPs.</description><subject>Arrays</subject><subject>Dynamic tests</subject><subject>Magnetism</subject><subject>Magnetization</subject><subject>Mathematical models</subject><subject>Microwaves</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>R&D</subject><subject>Research & development</subject><subject>Spin waves</subject><issn>1687-4110</issn><issn>1687-4129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqF0E1LxDAQBuAiCq6rJ-8S8CJK3SRNmsbburgqrB_4cS7TNHW7dJOatIj_3iwVES-e5j08zAxvFB0SfE4I5xOKSTKRnHKGt6IRSTMRM0Ll9k8meDfa836FMePBjaLHO3gzuqsVugdjW3AhNtpfoCl67ouVVh2qrEOXtluieW9KWGvTQYOetNfg1BKBKdG0bZtaQVdb4_ejnQoarw--5zh6nV-9zG7ixcP17Wy6iIGltIslL8uEgpIJK2UiFEkpCCiFAKwylpSE4ZQmKciCYVYxJXWhKi6gSJnQGamScXQy7G2dfe-17_J17ZVuGjDa9j4nnGLJOJE80OM_dGV7Z8J3OUlxuI6xYEGdDUo5673TVd66eg3uMyc437Sbb9rNh3aDPh30sg6lfNT_4KMB60B0Bb8wzhgWyRejG4F2</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Petracic, Oleg</creator><creator>Kleemann, Wolfgang</creator><creator>Barman, Anjan</creator><creator>Bedanta, S.</creator><creator>Seki, Takeshi</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20130101</creationdate><title>Magnetic Nanoparticles: A Subject for Both Fundamental Research and Applications</title><author>Petracic, Oleg ; Kleemann, Wolfgang ; Barman, Anjan ; Bedanta, S. ; Seki, Takeshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a462t-95dd32ac934d937c162a7ad77a0c843d1406236a9b404f4c9ebcf57ab647e81f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Arrays</topic><topic>Dynamic tests</topic><topic>Magnetism</topic><topic>Magnetization</topic><topic>Mathematical models</topic><topic>Microwaves</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>R&D</topic><topic>Research & development</topic><topic>Spin waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petracic, Oleg</creatorcontrib><creatorcontrib>Kleemann, Wolfgang</creatorcontrib><creatorcontrib>Barman, Anjan</creatorcontrib><creatorcontrib>Bedanta, S.</creatorcontrib><creatorcontrib>Seki, Takeshi</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Materials science collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Journal of nanomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petracic, Oleg</au><au>Kleemann, Wolfgang</au><au>Barman, Anjan</au><au>Bedanta, S.</au><au>Seki, Takeshi</au><au>Mago, Gaurav</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Nanoparticles: A Subject for Both Fundamental Research and Applications</atitle><jtitle>Journal of nanomaterials</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>1</spage><epage>22</epage><pages>1-22</pages><issn>1687-4110</issn><eissn>1687-4129</eissn><abstract>Single domain magnetic nanoparticles (MNPs) have been a vivid subject of intense research for the last fifty years. Preparation of magnetic nanoparticles and nanostructures has been achieved by both bottom-up and top-down approaches. Single domain MNPs show Néel-Brown-like relaxation. The Stoner-Wohlfarth model describes the angular dependence of the switching of the magnetization of a single domain particle in applied magnetic fields. By varying the spacing between the particles, the inter-particle interactions can be tuned. This leads to various supermagnetic states such as superparamagnetism, superspin glass, and superferromagnetism. Recently, the study of the magnetization dynamics of such single domain MNPs has attracted particular attention, and observations of various collective spin wave modes in patterned nanomagnet arrays have opened new avenues for on-chip microwave communications. MNPs have the potential for various other applications such as future recording media and in medicine. We will discuss the various aspects involved in the research on MNPs.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2013/952540</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-4110 |
ispartof | Journal of nanomaterials, 2013-01, Vol.2013 (2013), p.1-22 |
issn | 1687-4110 1687-4129 |
language | eng |
recordid | cdi_proquest_miscellaneous_1520945195 |
source | Wiley Online Library website; Publicly Available Content (ProQuest) |
subjects | Arrays Dynamic tests Magnetism Magnetization Mathematical models Microwaves Nanomaterials Nanoparticles Nanostructure NMR Nuclear magnetic resonance R&D Research & development Spin waves |
title | Magnetic Nanoparticles: A Subject for Both Fundamental Research and Applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A54%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Nanoparticles:%20A%20Subject%20for%20Both%20Fundamental%20Research%20and%20Applications&rft.jtitle=Journal%20of%20nanomaterials&rft.au=Petracic,%20Oleg&rft.date=2013-01-01&rft.volume=2013&rft.issue=2013&rft.spage=1&rft.epage=22&rft.pages=1-22&rft.issn=1687-4110&rft.eissn=1687-4129&rft_id=info:doi/10.1155/2013/952540&rft_dat=%3Cproquest_cross%3E3456006121%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a462t-95dd32ac934d937c162a7ad77a0c843d1406236a9b404f4c9ebcf57ab647e81f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1609370074&rft_id=info:pmid/&rfr_iscdi=true |