Loading…

Adaptive Neural Network Control with Backstepping for Surface Ships with Input Dead-Zone

This paper addresses the problem of adaptive neural network controller with backstepping technique for fully actuated surface vessels with input dead-zone. The combination of approximation-based adaptive technique and neural network system is used for approximating the nonlinear function of the ship...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical problems in engineering 2013-01, Vol.2013 (2013), p.1-9
Main Authors: Wu, Huiyong, Zhao, Ang, Shao, Xingchao, Xia, Guoqing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c389t-2be24095781ab84602ce6895c8deac039880b781fd96ece09f647f26d51b6bcf3
cites cdi_FETCH-LOGICAL-c389t-2be24095781ab84602ce6895c8deac039880b781fd96ece09f647f26d51b6bcf3
container_end_page 9
container_issue 2013
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2013
creator Wu, Huiyong
Zhao, Ang
Shao, Xingchao
Xia, Guoqing
description This paper addresses the problem of adaptive neural network controller with backstepping technique for fully actuated surface vessels with input dead-zone. The combination of approximation-based adaptive technique and neural network system is used for approximating the nonlinear function of the ship plant. Through backstepping and Lyapunov theory synthesis, an indirect adaptive network controller is derived for dynamic positioning ships without dead-zone property. In order to improve the control effect, a dead-zone compensator is derived using fuzzy logic technique to handle the dead-zone nonlinearity. The main advantage of the proposed controller is that it can be designed without explicit knowledge about the ship motion model, and dead-zone nonlinearity is well compensated. A set of simulations is carried out to verify the performance of the proposed controller.
doi_str_mv 10.1155/2013/530162
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1520954133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1986183455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-2be24095781ab84602ce6895c8deac039880b781fd96ece09f647f26d51b6bcf3</originalsourceid><addsrcrecordid>eNqF0E1LxDAQBuAiCn6evEvBiyh1M0mTTY-6fi0seliFxUtJ04lbtzY1aV3890bqQbx4moF5eBneKDoEcg7A-YgSYCPOCAi6Ee0AFyzhkI43w05omgBli-1o1_tXQihwkDvR4qJUbVd9YHyPvVN1GN3aulU8sU3nbB2vq24ZXyq98h22bdW8xMa6eN47ozTG82XV-sFMm7bv4itUZfJsG9yPtoyqPR78zL3o6eb6cXKXzB5up5OLWaKZzLqEFkhTkvGxBFXIVBCqUciMa1mi0oRlUpIiHE2ZCdRIMiPSsaGi5FCIQhu2F50Mua2z7z36Ln-rvMa6Vg3a3ufAaYhPgbFAj__QV9u7JnyXQyYFSJZyHtTZoLSz3js0eeuqN-U-cyD5d8v5d8v50HLQp4NeVk2p1tU_-GjAGAga9QszyARhX8-uhJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1986183455</pqid></control><display><type>article</type><title>Adaptive Neural Network Control with Backstepping for Surface Ships with Input Dead-Zone</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>IngentaConnect Journals</source><creator>Wu, Huiyong ; Zhao, Ang ; Shao, Xingchao ; Xia, Guoqing</creator><contributor>Chou, Jyh-Horng</contributor><creatorcontrib>Wu, Huiyong ; Zhao, Ang ; Shao, Xingchao ; Xia, Guoqing ; Chou, Jyh-Horng</creatorcontrib><description>This paper addresses the problem of adaptive neural network controller with backstepping technique for fully actuated surface vessels with input dead-zone. The combination of approximation-based adaptive technique and neural network system is used for approximating the nonlinear function of the ship plant. Through backstepping and Lyapunov theory synthesis, an indirect adaptive network controller is derived for dynamic positioning ships without dead-zone property. In order to improve the control effect, a dead-zone compensator is derived using fuzzy logic technique to handle the dead-zone nonlinearity. The main advantage of the proposed controller is that it can be designed without explicit knowledge about the ship motion model, and dead-zone nonlinearity is well compensated. A set of simulations is carried out to verify the performance of the proposed controller.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2013/530162</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Adaptive control ; Adaptive control systems ; Approximation ; Computer simulation ; Control algorithms ; Control theory ; Controllers ; Design ; Engineering ; Explicit knowledge ; Fuzzy logic ; International conferences ; Mathematical models ; Mathematical problems ; Motion control ; Network control ; Neural networks ; Nonlinear dynamics ; Nonlinearity ; Parameter estimation ; Robots ; Ship motion ; Ships ; Studies</subject><ispartof>Mathematical problems in engineering, 2013-01, Vol.2013 (2013), p.1-9</ispartof><rights>Copyright © 2013 Guoqing Xia et al.</rights><rights>Copyright © 2013 Guoqing Xia et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-2be24095781ab84602ce6895c8deac039880b781fd96ece09f647f26d51b6bcf3</citedby><cites>FETCH-LOGICAL-c389t-2be24095781ab84602ce6895c8deac039880b781fd96ece09f647f26d51b6bcf3</cites><orcidid>0000-0002-2039-7282 ; 0000-0002-9114-2690</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1986183455/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1986183455?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids></links><search><contributor>Chou, Jyh-Horng</contributor><creatorcontrib>Wu, Huiyong</creatorcontrib><creatorcontrib>Zhao, Ang</creatorcontrib><creatorcontrib>Shao, Xingchao</creatorcontrib><creatorcontrib>Xia, Guoqing</creatorcontrib><title>Adaptive Neural Network Control with Backstepping for Surface Ships with Input Dead-Zone</title><title>Mathematical problems in engineering</title><description>This paper addresses the problem of adaptive neural network controller with backstepping technique for fully actuated surface vessels with input dead-zone. The combination of approximation-based adaptive technique and neural network system is used for approximating the nonlinear function of the ship plant. Through backstepping and Lyapunov theory synthesis, an indirect adaptive network controller is derived for dynamic positioning ships without dead-zone property. In order to improve the control effect, a dead-zone compensator is derived using fuzzy logic technique to handle the dead-zone nonlinearity. The main advantage of the proposed controller is that it can be designed without explicit knowledge about the ship motion model, and dead-zone nonlinearity is well compensated. A set of simulations is carried out to verify the performance of the proposed controller.</description><subject>Adaptive control</subject><subject>Adaptive control systems</subject><subject>Approximation</subject><subject>Computer simulation</subject><subject>Control algorithms</subject><subject>Control theory</subject><subject>Controllers</subject><subject>Design</subject><subject>Engineering</subject><subject>Explicit knowledge</subject><subject>Fuzzy logic</subject><subject>International conferences</subject><subject>Mathematical models</subject><subject>Mathematical problems</subject><subject>Motion control</subject><subject>Network control</subject><subject>Neural networks</subject><subject>Nonlinear dynamics</subject><subject>Nonlinearity</subject><subject>Parameter estimation</subject><subject>Robots</subject><subject>Ship motion</subject><subject>Ships</subject><subject>Studies</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqF0E1LxDAQBuAiCn6evEvBiyh1M0mTTY-6fi0seliFxUtJ04lbtzY1aV3890bqQbx4moF5eBneKDoEcg7A-YgSYCPOCAi6Ee0AFyzhkI43w05omgBli-1o1_tXQihwkDvR4qJUbVd9YHyPvVN1GN3aulU8sU3nbB2vq24ZXyq98h22bdW8xMa6eN47ozTG82XV-sFMm7bv4itUZfJsG9yPtoyqPR78zL3o6eb6cXKXzB5up5OLWaKZzLqEFkhTkvGxBFXIVBCqUciMa1mi0oRlUpIiHE2ZCdRIMiPSsaGi5FCIQhu2F50Mua2z7z36Ln-rvMa6Vg3a3ufAaYhPgbFAj__QV9u7JnyXQyYFSJZyHtTZoLSz3js0eeuqN-U-cyD5d8v5d8v50HLQp4NeVk2p1tU_-GjAGAga9QszyARhX8-uhJg</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Wu, Huiyong</creator><creator>Zhao, Ang</creator><creator>Shao, Xingchao</creator><creator>Xia, Guoqing</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SC</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2039-7282</orcidid><orcidid>https://orcid.org/0000-0002-9114-2690</orcidid></search><sort><creationdate>20130101</creationdate><title>Adaptive Neural Network Control with Backstepping for Surface Ships with Input Dead-Zone</title><author>Wu, Huiyong ; Zhao, Ang ; Shao, Xingchao ; Xia, Guoqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-2be24095781ab84602ce6895c8deac039880b781fd96ece09f647f26d51b6bcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adaptive control</topic><topic>Adaptive control systems</topic><topic>Approximation</topic><topic>Computer simulation</topic><topic>Control algorithms</topic><topic>Control theory</topic><topic>Controllers</topic><topic>Design</topic><topic>Engineering</topic><topic>Explicit knowledge</topic><topic>Fuzzy logic</topic><topic>International conferences</topic><topic>Mathematical models</topic><topic>Mathematical problems</topic><topic>Motion control</topic><topic>Network control</topic><topic>Neural networks</topic><topic>Nonlinear dynamics</topic><topic>Nonlinearity</topic><topic>Parameter estimation</topic><topic>Robots</topic><topic>Ship motion</topic><topic>Ships</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Huiyong</creatorcontrib><creatorcontrib>Zhao, Ang</creatorcontrib><creatorcontrib>Shao, Xingchao</creatorcontrib><creatorcontrib>Xia, Guoqing</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Huiyong</au><au>Zhao, Ang</au><au>Shao, Xingchao</au><au>Xia, Guoqing</au><au>Chou, Jyh-Horng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Neural Network Control with Backstepping for Surface Ships with Input Dead-Zone</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>This paper addresses the problem of adaptive neural network controller with backstepping technique for fully actuated surface vessels with input dead-zone. The combination of approximation-based adaptive technique and neural network system is used for approximating the nonlinear function of the ship plant. Through backstepping and Lyapunov theory synthesis, an indirect adaptive network controller is derived for dynamic positioning ships without dead-zone property. In order to improve the control effect, a dead-zone compensator is derived using fuzzy logic technique to handle the dead-zone nonlinearity. The main advantage of the proposed controller is that it can be designed without explicit knowledge about the ship motion model, and dead-zone nonlinearity is well compensated. A set of simulations is carried out to verify the performance of the proposed controller.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2013/530162</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2039-7282</orcidid><orcidid>https://orcid.org/0000-0002-9114-2690</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2013-01, Vol.2013 (2013), p.1-9
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_miscellaneous_1520954133
source Wiley-Blackwell Open Access Collection; Publicly Available Content Database (Proquest) (PQ_SDU_P3); IngentaConnect Journals
subjects Adaptive control
Adaptive control systems
Approximation
Computer simulation
Control algorithms
Control theory
Controllers
Design
Engineering
Explicit knowledge
Fuzzy logic
International conferences
Mathematical models
Mathematical problems
Motion control
Network control
Neural networks
Nonlinear dynamics
Nonlinearity
Parameter estimation
Robots
Ship motion
Ships
Studies
title Adaptive Neural Network Control with Backstepping for Surface Ships with Input Dead-Zone
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A16%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Neural%20Network%20Control%20with%20Backstepping%20for%20Surface%20Ships%20with%20Input%20Dead-Zone&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Wu,%20Huiyong&rft.date=2013-01-01&rft.volume=2013&rft.issue=2013&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2013/530162&rft_dat=%3Cproquest_cross%3E1986183455%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-2be24095781ab84602ce6895c8deac039880b781fd96ece09f647f26d51b6bcf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1986183455&rft_id=info:pmid/&rfr_iscdi=true