Loading…
Adaptive Neural Network Control with Backstepping for Surface Ships with Input Dead-Zone
This paper addresses the problem of adaptive neural network controller with backstepping technique for fully actuated surface vessels with input dead-zone. The combination of approximation-based adaptive technique and neural network system is used for approximating the nonlinear function of the ship...
Saved in:
Published in: | Mathematical problems in engineering 2013-01, Vol.2013 (2013), p.1-9 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c389t-2be24095781ab84602ce6895c8deac039880b781fd96ece09f647f26d51b6bcf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c389t-2be24095781ab84602ce6895c8deac039880b781fd96ece09f647f26d51b6bcf3 |
container_end_page | 9 |
container_issue | 2013 |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2013 |
creator | Wu, Huiyong Zhao, Ang Shao, Xingchao Xia, Guoqing |
description | This paper addresses the problem of adaptive neural network controller with backstepping technique for fully actuated surface vessels with input dead-zone. The combination of approximation-based adaptive technique and neural network system is used for approximating the nonlinear function of the ship plant. Through backstepping and Lyapunov theory synthesis, an indirect adaptive network controller is derived for dynamic positioning ships without dead-zone property. In order to improve the control effect, a dead-zone compensator is derived using fuzzy logic technique to handle the dead-zone nonlinearity. The main advantage of the proposed controller is that it can be designed without explicit knowledge about the ship motion model, and dead-zone nonlinearity is well compensated. A set of simulations is carried out to verify the performance of the proposed controller. |
doi_str_mv | 10.1155/2013/530162 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1520954133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1986183455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-2be24095781ab84602ce6895c8deac039880b781fd96ece09f647f26d51b6bcf3</originalsourceid><addsrcrecordid>eNqF0E1LxDAQBuAiCn6evEvBiyh1M0mTTY-6fi0seliFxUtJ04lbtzY1aV3890bqQbx4moF5eBneKDoEcg7A-YgSYCPOCAi6Ee0AFyzhkI43w05omgBli-1o1_tXQihwkDvR4qJUbVd9YHyPvVN1GN3aulU8sU3nbB2vq24ZXyq98h22bdW8xMa6eN47ozTG82XV-sFMm7bv4itUZfJsG9yPtoyqPR78zL3o6eb6cXKXzB5up5OLWaKZzLqEFkhTkvGxBFXIVBCqUciMa1mi0oRlUpIiHE2ZCdRIMiPSsaGi5FCIQhu2F50Mua2z7z36Ln-rvMa6Vg3a3ufAaYhPgbFAj__QV9u7JnyXQyYFSJZyHtTZoLSz3js0eeuqN-U-cyD5d8v5d8v50HLQp4NeVk2p1tU_-GjAGAga9QszyARhX8-uhJg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1986183455</pqid></control><display><type>article</type><title>Adaptive Neural Network Control with Backstepping for Surface Ships with Input Dead-Zone</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>IngentaConnect Journals</source><creator>Wu, Huiyong ; Zhao, Ang ; Shao, Xingchao ; Xia, Guoqing</creator><contributor>Chou, Jyh-Horng</contributor><creatorcontrib>Wu, Huiyong ; Zhao, Ang ; Shao, Xingchao ; Xia, Guoqing ; Chou, Jyh-Horng</creatorcontrib><description>This paper addresses the problem of adaptive neural network controller with backstepping technique for fully actuated surface vessels with input dead-zone. The combination of approximation-based adaptive technique and neural network system is used for approximating the nonlinear function of the ship plant. Through backstepping and Lyapunov theory synthesis, an indirect adaptive network controller is derived for dynamic positioning ships without dead-zone property. In order to improve the control effect, a dead-zone compensator is derived using fuzzy logic technique to handle the dead-zone nonlinearity. The main advantage of the proposed controller is that it can be designed without explicit knowledge about the ship motion model, and dead-zone nonlinearity is well compensated. A set of simulations is carried out to verify the performance of the proposed controller.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2013/530162</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Adaptive control ; Adaptive control systems ; Approximation ; Computer simulation ; Control algorithms ; Control theory ; Controllers ; Design ; Engineering ; Explicit knowledge ; Fuzzy logic ; International conferences ; Mathematical models ; Mathematical problems ; Motion control ; Network control ; Neural networks ; Nonlinear dynamics ; Nonlinearity ; Parameter estimation ; Robots ; Ship motion ; Ships ; Studies</subject><ispartof>Mathematical problems in engineering, 2013-01, Vol.2013 (2013), p.1-9</ispartof><rights>Copyright © 2013 Guoqing Xia et al.</rights><rights>Copyright © 2013 Guoqing Xia et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-2be24095781ab84602ce6895c8deac039880b781fd96ece09f647f26d51b6bcf3</citedby><cites>FETCH-LOGICAL-c389t-2be24095781ab84602ce6895c8deac039880b781fd96ece09f647f26d51b6bcf3</cites><orcidid>0000-0002-2039-7282 ; 0000-0002-9114-2690</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1986183455/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1986183455?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids></links><search><contributor>Chou, Jyh-Horng</contributor><creatorcontrib>Wu, Huiyong</creatorcontrib><creatorcontrib>Zhao, Ang</creatorcontrib><creatorcontrib>Shao, Xingchao</creatorcontrib><creatorcontrib>Xia, Guoqing</creatorcontrib><title>Adaptive Neural Network Control with Backstepping for Surface Ships with Input Dead-Zone</title><title>Mathematical problems in engineering</title><description>This paper addresses the problem of adaptive neural network controller with backstepping technique for fully actuated surface vessels with input dead-zone. The combination of approximation-based adaptive technique and neural network system is used for approximating the nonlinear function of the ship plant. Through backstepping and Lyapunov theory synthesis, an indirect adaptive network controller is derived for dynamic positioning ships without dead-zone property. In order to improve the control effect, a dead-zone compensator is derived using fuzzy logic technique to handle the dead-zone nonlinearity. The main advantage of the proposed controller is that it can be designed without explicit knowledge about the ship motion model, and dead-zone nonlinearity is well compensated. A set of simulations is carried out to verify the performance of the proposed controller.</description><subject>Adaptive control</subject><subject>Adaptive control systems</subject><subject>Approximation</subject><subject>Computer simulation</subject><subject>Control algorithms</subject><subject>Control theory</subject><subject>Controllers</subject><subject>Design</subject><subject>Engineering</subject><subject>Explicit knowledge</subject><subject>Fuzzy logic</subject><subject>International conferences</subject><subject>Mathematical models</subject><subject>Mathematical problems</subject><subject>Motion control</subject><subject>Network control</subject><subject>Neural networks</subject><subject>Nonlinear dynamics</subject><subject>Nonlinearity</subject><subject>Parameter estimation</subject><subject>Robots</subject><subject>Ship motion</subject><subject>Ships</subject><subject>Studies</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqF0E1LxDAQBuAiCn6evEvBiyh1M0mTTY-6fi0seliFxUtJ04lbtzY1aV3890bqQbx4moF5eBneKDoEcg7A-YgSYCPOCAi6Ee0AFyzhkI43w05omgBli-1o1_tXQihwkDvR4qJUbVd9YHyPvVN1GN3aulU8sU3nbB2vq24ZXyq98h22bdW8xMa6eN47ozTG82XV-sFMm7bv4itUZfJsG9yPtoyqPR78zL3o6eb6cXKXzB5up5OLWaKZzLqEFkhTkvGxBFXIVBCqUciMa1mi0oRlUpIiHE2ZCdRIMiPSsaGi5FCIQhu2F50Mua2z7z36Ln-rvMa6Vg3a3ufAaYhPgbFAj__QV9u7JnyXQyYFSJZyHtTZoLSz3js0eeuqN-U-cyD5d8v5d8v50HLQp4NeVk2p1tU_-GjAGAga9QszyARhX8-uhJg</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Wu, Huiyong</creator><creator>Zhao, Ang</creator><creator>Shao, Xingchao</creator><creator>Xia, Guoqing</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SC</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2039-7282</orcidid><orcidid>https://orcid.org/0000-0002-9114-2690</orcidid></search><sort><creationdate>20130101</creationdate><title>Adaptive Neural Network Control with Backstepping for Surface Ships with Input Dead-Zone</title><author>Wu, Huiyong ; Zhao, Ang ; Shao, Xingchao ; Xia, Guoqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-2be24095781ab84602ce6895c8deac039880b781fd96ece09f647f26d51b6bcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adaptive control</topic><topic>Adaptive control systems</topic><topic>Approximation</topic><topic>Computer simulation</topic><topic>Control algorithms</topic><topic>Control theory</topic><topic>Controllers</topic><topic>Design</topic><topic>Engineering</topic><topic>Explicit knowledge</topic><topic>Fuzzy logic</topic><topic>International conferences</topic><topic>Mathematical models</topic><topic>Mathematical problems</topic><topic>Motion control</topic><topic>Network control</topic><topic>Neural networks</topic><topic>Nonlinear dynamics</topic><topic>Nonlinearity</topic><topic>Parameter estimation</topic><topic>Robots</topic><topic>Ship motion</topic><topic>Ships</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Huiyong</creatorcontrib><creatorcontrib>Zhao, Ang</creatorcontrib><creatorcontrib>Shao, Xingchao</creatorcontrib><creatorcontrib>Xia, Guoqing</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Huiyong</au><au>Zhao, Ang</au><au>Shao, Xingchao</au><au>Xia, Guoqing</au><au>Chou, Jyh-Horng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Neural Network Control with Backstepping for Surface Ships with Input Dead-Zone</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>This paper addresses the problem of adaptive neural network controller with backstepping technique for fully actuated surface vessels with input dead-zone. The combination of approximation-based adaptive technique and neural network system is used for approximating the nonlinear function of the ship plant. Through backstepping and Lyapunov theory synthesis, an indirect adaptive network controller is derived for dynamic positioning ships without dead-zone property. In order to improve the control effect, a dead-zone compensator is derived using fuzzy logic technique to handle the dead-zone nonlinearity. The main advantage of the proposed controller is that it can be designed without explicit knowledge about the ship motion model, and dead-zone nonlinearity is well compensated. A set of simulations is carried out to verify the performance of the proposed controller.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2013/530162</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2039-7282</orcidid><orcidid>https://orcid.org/0000-0002-9114-2690</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2013-01, Vol.2013 (2013), p.1-9 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_miscellaneous_1520954133 |
source | Wiley-Blackwell Open Access Collection; Publicly Available Content Database (Proquest) (PQ_SDU_P3); IngentaConnect Journals |
subjects | Adaptive control Adaptive control systems Approximation Computer simulation Control algorithms Control theory Controllers Design Engineering Explicit knowledge Fuzzy logic International conferences Mathematical models Mathematical problems Motion control Network control Neural networks Nonlinear dynamics Nonlinearity Parameter estimation Robots Ship motion Ships Studies |
title | Adaptive Neural Network Control with Backstepping for Surface Ships with Input Dead-Zone |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A16%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Neural%20Network%20Control%20with%20Backstepping%20for%20Surface%20Ships%20with%20Input%20Dead-Zone&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Wu,%20Huiyong&rft.date=2013-01-01&rft.volume=2013&rft.issue=2013&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2013/530162&rft_dat=%3Cproquest_cross%3E1986183455%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c389t-2be24095781ab84602ce6895c8deac039880b781fd96ece09f647f26d51b6bcf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1986183455&rft_id=info:pmid/&rfr_iscdi=true |