Loading…
Cyber-EDA: Estimation of Distribution Algorithms with Adaptive Memory Programming
The estimation of distribution algorithm (EDA) aims to explicitly model the probability distribution of the quality solutions to the underlying problem. By iterative filtering for quality solution from competing ones, the probability model eventually approximates the distribution of global optimum s...
Saved in:
Published in: | Mathematical Problems in Engineering 2013-01, Vol.2013 (2013), p.496-506-047 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The estimation of distribution algorithm (EDA) aims to explicitly model the probability distribution of the quality solutions to the underlying problem. By iterative filtering for quality solution from competing ones, the probability model eventually approximates the distribution of global optimum solutions. In contrast to classic evolutionary algorithms (EAs), EDA framework is flexible and is able to handle inter variable dependence, which usually imposes difficulties on classic EAs. The success of EDA relies on effective and efficient building of the probability model. This paper facilitates EDA from the adaptive memory programming (AMP) domain which has developed several improved forms of EAs using the Cyber-EA framework. The experimental result on benchmark TSP instances supports our anticipation that the AMP strategies can enhance the performance of classic EDA by deriving a better approximation for the true distribution of the target solutions. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2013/132697 |