Loading…

Facile synthesis of nickel nanoparticles supported on carbon and silica matrix via a novel silica sol–gel process

In this work, we introduce a modified novel silica sol–gel process to synthesize hexagonal close-packed (hcp) and face-centered cubic (fcc) nickel (Ni) nanoparticles supported on amorphous carbon and silica matrix. The supporting of amorphous carbon and silica can prevent the Ni nanoparticles from a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of sol-gel science and technology 2014, Vol.69 (1), p.130-136
Main Authors: Xu, Lianqiang, Huang, Haifu, Tang, Shaolong, Chen, Leyi, Xie, Ren, Xia, Wenbin, Wei, Jun, Zhong, Wei, Du, Youwei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, we introduce a modified novel silica sol–gel process to synthesize hexagonal close-packed (hcp) and face-centered cubic (fcc) nickel (Ni) nanoparticles supported on amorphous carbon and silica matrix. The supporting of amorphous carbon and silica can prevent the Ni nanoparticles from aggregating and being oxided which would result in the loss of their magnetism and dispersibility. The phase structure of the Ni nanoparticles which were obtained from the gels pyrolyzed from 250 to 350 °C is hcp structure, whereas that of the Ni nanoparticles pyrolyzed at 750 °C is fcc structure. The grain sizes of the hcp Ni nanoparticles calcined at 250 °C range from 5 to 20 nm in diameter, and that of the fcc Ni nanoparticles calcined at 750 °C range in 7–35 nm. The studies of magnetic properties of the hcp and fcc Ni nanoparticles show that both have quite different magnetic behaviors.
ISSN:0928-0707
1573-4846
DOI:10.1007/s10971-013-3195-2