Loading…
HTTP Traffic Graph Clustering using Markov Clustering Algorithm
Graph-based techniques and analysis have been used for IP network traffic analysis. The objective of this paper is to study the hosts' interaction behavior and use graph clustering algorithm, the Markov clustering algorithm, to group (cluster) hosts which have interaction using the HTTP protoco...
Saved in:
Published in: | International journal of computer applications 2014-01, Vol.90 (2), p.37-41 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c1734-65539b5c520de8b2c99105c8c5a02dd549f9a149ad3acb6b4a351bab91432df33 |
---|---|
cites | |
container_end_page | 41 |
container_issue | 2 |
container_start_page | 37 |
container_title | International journal of computer applications |
container_volume | 90 |
creator | Nataliani, Yessica Wellem, Theophilus |
description | Graph-based techniques and analysis have been used for IP network traffic analysis. The objective of this paper is to study the hosts' interaction behavior and use graph clustering algorithm, the Markov clustering algorithm, to group (cluster) hosts which have interaction using the HTTP protocol. Using real network traces, the clustering results show that MCL algorithm successfully group the hosts to their corresponding clusters. Analyzing the clustering results, it is showed that communications between one source IP address to one destination IP address, one source IP address to several (different) destination IP addresses, and several (different) source IP addresses to one destination IP address, are grouped to their own clusters. |
doi_str_mv | 10.5120/15549-4344 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1520971693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3235549641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1734-65539b5c520de8b2c99105c8c5a02dd549f9a149ad3acb6b4a351bab91432df33</originalsourceid><addsrcrecordid>eNpdkE9Lw0AQxRdRsNRe_AQBLyJE92-SOUkJthUqeojnZbPZtKlJNu4mgt_exHoozmHmMfx4PB5C1wTfC0LxAxGCQ8gZ52dohiEWYZIk8fmJvkQL7w94HAY0Aj5Dj5ssewsyp8qy0sHaqW4fpPXge-OqdhcMftovyn3Yr9P_st5ZV_X75gpdlKr2ZvF35-h99ZSlm3D7un5Ol9tQk5jxMBKCQS60oLgwSU41AMFCJ1ooTItizF2CIhxUwZTOo5wrJkiuciCc0aJkbI5uj76ds5-D8b1sKq9NXavW2MFLMjpDTCKY0Jt_6MEOrh3TjRRmcUIjCiN1d6S0s947U8rOVY1y35JgOdUpf-uUU53sB8AqZLU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1503782629</pqid></control><display><type>article</type><title>HTTP Traffic Graph Clustering using Markov Clustering Algorithm</title><source>Freely Accessible Science Journals</source><creator>Nataliani, Yessica ; Wellem, Theophilus</creator><creatorcontrib>Nataliani, Yessica ; Wellem, Theophilus</creatorcontrib><description>Graph-based techniques and analysis have been used for IP network traffic analysis. The objective of this paper is to study the hosts' interaction behavior and use graph clustering algorithm, the Markov clustering algorithm, to group (cluster) hosts which have interaction using the HTTP protocol. Using real network traces, the clustering results show that MCL algorithm successfully group the hosts to their corresponding clusters. Analyzing the clustering results, it is showed that communications between one source IP address to one destination IP address, one source IP address to several (different) destination IP addresses, and several (different) source IP addresses to one destination IP address, are grouped to their own clusters.</description><identifier>ISSN: 0975-8887</identifier><identifier>EISSN: 0975-8887</identifier><identifier>DOI: 10.5120/15549-4344</identifier><language>eng</language><publisher>New York: Foundation of Computer Science</publisher><subject>Algorithms ; Clustering ; Clusters ; Graphs ; IP (Internet Protocol) ; Markov processes ; Networks ; Traffic engineering</subject><ispartof>International journal of computer applications, 2014-01, Vol.90 (2), p.37-41</ispartof><rights>Copyright Foundation of Computer Science 2014</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1734-65539b5c520de8b2c99105c8c5a02dd549f9a149ad3acb6b4a351bab91432df33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Nataliani, Yessica</creatorcontrib><creatorcontrib>Wellem, Theophilus</creatorcontrib><title>HTTP Traffic Graph Clustering using Markov Clustering Algorithm</title><title>International journal of computer applications</title><description>Graph-based techniques and analysis have been used for IP network traffic analysis. The objective of this paper is to study the hosts' interaction behavior and use graph clustering algorithm, the Markov clustering algorithm, to group (cluster) hosts which have interaction using the HTTP protocol. Using real network traces, the clustering results show that MCL algorithm successfully group the hosts to their corresponding clusters. Analyzing the clustering results, it is showed that communications between one source IP address to one destination IP address, one source IP address to several (different) destination IP addresses, and several (different) source IP addresses to one destination IP address, are grouped to their own clusters.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Clusters</subject><subject>Graphs</subject><subject>IP (Internet Protocol)</subject><subject>Markov processes</subject><subject>Networks</subject><subject>Traffic engineering</subject><issn>0975-8887</issn><issn>0975-8887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkE9Lw0AQxRdRsNRe_AQBLyJE92-SOUkJthUqeojnZbPZtKlJNu4mgt_exHoozmHmMfx4PB5C1wTfC0LxAxGCQ8gZ52dohiEWYZIk8fmJvkQL7w94HAY0Aj5Dj5ssewsyp8qy0sHaqW4fpPXge-OqdhcMftovyn3Yr9P_st5ZV_X75gpdlKr2ZvF35-h99ZSlm3D7un5Ol9tQk5jxMBKCQS60oLgwSU41AMFCJ1ooTItizF2CIhxUwZTOo5wrJkiuciCc0aJkbI5uj76ds5-D8b1sKq9NXavW2MFLMjpDTCKY0Jt_6MEOrh3TjRRmcUIjCiN1d6S0s947U8rOVY1y35JgOdUpf-uUU53sB8AqZLU</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Nataliani, Yessica</creator><creator>Wellem, Theophilus</creator><general>Foundation of Computer Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140101</creationdate><title>HTTP Traffic Graph Clustering using Markov Clustering Algorithm</title><author>Nataliani, Yessica ; Wellem, Theophilus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1734-65539b5c520de8b2c99105c8c5a02dd549f9a149ad3acb6b4a351bab91432df33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Clusters</topic><topic>Graphs</topic><topic>IP (Internet Protocol)</topic><topic>Markov processes</topic><topic>Networks</topic><topic>Traffic engineering</topic><toplevel>online_resources</toplevel><creatorcontrib>Nataliani, Yessica</creatorcontrib><creatorcontrib>Wellem, Theophilus</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computer applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nataliani, Yessica</au><au>Wellem, Theophilus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HTTP Traffic Graph Clustering using Markov Clustering Algorithm</atitle><jtitle>International journal of computer applications</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>90</volume><issue>2</issue><spage>37</spage><epage>41</epage><pages>37-41</pages><issn>0975-8887</issn><eissn>0975-8887</eissn><abstract>Graph-based techniques and analysis have been used for IP network traffic analysis. The objective of this paper is to study the hosts' interaction behavior and use graph clustering algorithm, the Markov clustering algorithm, to group (cluster) hosts which have interaction using the HTTP protocol. Using real network traces, the clustering results show that MCL algorithm successfully group the hosts to their corresponding clusters. Analyzing the clustering results, it is showed that communications between one source IP address to one destination IP address, one source IP address to several (different) destination IP addresses, and several (different) source IP addresses to one destination IP address, are grouped to their own clusters.</abstract><cop>New York</cop><pub>Foundation of Computer Science</pub><doi>10.5120/15549-4344</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0975-8887 |
ispartof | International journal of computer applications, 2014-01, Vol.90 (2), p.37-41 |
issn | 0975-8887 0975-8887 |
language | eng |
recordid | cdi_proquest_miscellaneous_1520971693 |
source | Freely Accessible Science Journals |
subjects | Algorithms Clustering Clusters Graphs IP (Internet Protocol) Markov processes Networks Traffic engineering |
title | HTTP Traffic Graph Clustering using Markov Clustering Algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A18%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HTTP%20Traffic%20Graph%20Clustering%20using%20Markov%20Clustering%20Algorithm&rft.jtitle=International%20journal%20of%20computer%20applications&rft.au=Nataliani,%20Yessica&rft.date=2014-01-01&rft.volume=90&rft.issue=2&rft.spage=37&rft.epage=41&rft.pages=37-41&rft.issn=0975-8887&rft.eissn=0975-8887&rft_id=info:doi/10.5120/15549-4344&rft_dat=%3Cproquest_cross%3E3235549641%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1734-65539b5c520de8b2c99105c8c5a02dd549f9a149ad3acb6b4a351bab91432df33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1503782629&rft_id=info:pmid/&rfr_iscdi=true |