Loading…

HTTP Traffic Graph Clustering using Markov Clustering Algorithm

Graph-based techniques and analysis have been used for IP network traffic analysis. The objective of this paper is to study the hosts' interaction behavior and use graph clustering algorithm, the Markov clustering algorithm, to group (cluster) hosts which have interaction using the HTTP protoco...

Full description

Saved in:
Bibliographic Details
Published in:International journal of computer applications 2014-01, Vol.90 (2), p.37-41
Main Authors: Nataliani, Yessica, Wellem, Theophilus
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c1734-65539b5c520de8b2c99105c8c5a02dd549f9a149ad3acb6b4a351bab91432df33
cites
container_end_page 41
container_issue 2
container_start_page 37
container_title International journal of computer applications
container_volume 90
creator Nataliani, Yessica
Wellem, Theophilus
description Graph-based techniques and analysis have been used for IP network traffic analysis. The objective of this paper is to study the hosts' interaction behavior and use graph clustering algorithm, the Markov clustering algorithm, to group (cluster) hosts which have interaction using the HTTP protocol. Using real network traces, the clustering results show that MCL algorithm successfully group the hosts to their corresponding clusters. Analyzing the clustering results, it is showed that communications between one source IP address to one destination IP address, one source IP address to several (different) destination IP addresses, and several (different) source IP addresses to one destination IP address, are grouped to their own clusters.
doi_str_mv 10.5120/15549-4344
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1520971693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3235549641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1734-65539b5c520de8b2c99105c8c5a02dd549f9a149ad3acb6b4a351bab91432df33</originalsourceid><addsrcrecordid>eNpdkE9Lw0AQxRdRsNRe_AQBLyJE92-SOUkJthUqeojnZbPZtKlJNu4mgt_exHoozmHmMfx4PB5C1wTfC0LxAxGCQ8gZ52dohiEWYZIk8fmJvkQL7w94HAY0Aj5Dj5ssewsyp8qy0sHaqW4fpPXge-OqdhcMftovyn3Yr9P_st5ZV_X75gpdlKr2ZvF35-h99ZSlm3D7un5Ol9tQk5jxMBKCQS60oLgwSU41AMFCJ1ooTItizF2CIhxUwZTOo5wrJkiuciCc0aJkbI5uj76ds5-D8b1sKq9NXavW2MFLMjpDTCKY0Jt_6MEOrh3TjRRmcUIjCiN1d6S0s947U8rOVY1y35JgOdUpf-uUU53sB8AqZLU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1503782629</pqid></control><display><type>article</type><title>HTTP Traffic Graph Clustering using Markov Clustering Algorithm</title><source>Freely Accessible Science Journals</source><creator>Nataliani, Yessica ; Wellem, Theophilus</creator><creatorcontrib>Nataliani, Yessica ; Wellem, Theophilus</creatorcontrib><description>Graph-based techniques and analysis have been used for IP network traffic analysis. The objective of this paper is to study the hosts' interaction behavior and use graph clustering algorithm, the Markov clustering algorithm, to group (cluster) hosts which have interaction using the HTTP protocol. Using real network traces, the clustering results show that MCL algorithm successfully group the hosts to their corresponding clusters. Analyzing the clustering results, it is showed that communications between one source IP address to one destination IP address, one source IP address to several (different) destination IP addresses, and several (different) source IP addresses to one destination IP address, are grouped to their own clusters.</description><identifier>ISSN: 0975-8887</identifier><identifier>EISSN: 0975-8887</identifier><identifier>DOI: 10.5120/15549-4344</identifier><language>eng</language><publisher>New York: Foundation of Computer Science</publisher><subject>Algorithms ; Clustering ; Clusters ; Graphs ; IP (Internet Protocol) ; Markov processes ; Networks ; Traffic engineering</subject><ispartof>International journal of computer applications, 2014-01, Vol.90 (2), p.37-41</ispartof><rights>Copyright Foundation of Computer Science 2014</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1734-65539b5c520de8b2c99105c8c5a02dd549f9a149ad3acb6b4a351bab91432df33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Nataliani, Yessica</creatorcontrib><creatorcontrib>Wellem, Theophilus</creatorcontrib><title>HTTP Traffic Graph Clustering using Markov Clustering Algorithm</title><title>International journal of computer applications</title><description>Graph-based techniques and analysis have been used for IP network traffic analysis. The objective of this paper is to study the hosts' interaction behavior and use graph clustering algorithm, the Markov clustering algorithm, to group (cluster) hosts which have interaction using the HTTP protocol. Using real network traces, the clustering results show that MCL algorithm successfully group the hosts to their corresponding clusters. Analyzing the clustering results, it is showed that communications between one source IP address to one destination IP address, one source IP address to several (different) destination IP addresses, and several (different) source IP addresses to one destination IP address, are grouped to their own clusters.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Clusters</subject><subject>Graphs</subject><subject>IP (Internet Protocol)</subject><subject>Markov processes</subject><subject>Networks</subject><subject>Traffic engineering</subject><issn>0975-8887</issn><issn>0975-8887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkE9Lw0AQxRdRsNRe_AQBLyJE92-SOUkJthUqeojnZbPZtKlJNu4mgt_exHoozmHmMfx4PB5C1wTfC0LxAxGCQ8gZ52dohiEWYZIk8fmJvkQL7w94HAY0Aj5Dj5ssewsyp8qy0sHaqW4fpPXge-OqdhcMftovyn3Yr9P_st5ZV_X75gpdlKr2ZvF35-h99ZSlm3D7un5Ol9tQk5jxMBKCQS60oLgwSU41AMFCJ1ooTItizF2CIhxUwZTOo5wrJkiuciCc0aJkbI5uj76ds5-D8b1sKq9NXavW2MFLMjpDTCKY0Jt_6MEOrh3TjRRmcUIjCiN1d6S0s947U8rOVY1y35JgOdUpf-uUU53sB8AqZLU</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Nataliani, Yessica</creator><creator>Wellem, Theophilus</creator><general>Foundation of Computer Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140101</creationdate><title>HTTP Traffic Graph Clustering using Markov Clustering Algorithm</title><author>Nataliani, Yessica ; Wellem, Theophilus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1734-65539b5c520de8b2c99105c8c5a02dd549f9a149ad3acb6b4a351bab91432df33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Clusters</topic><topic>Graphs</topic><topic>IP (Internet Protocol)</topic><topic>Markov processes</topic><topic>Networks</topic><topic>Traffic engineering</topic><toplevel>online_resources</toplevel><creatorcontrib>Nataliani, Yessica</creatorcontrib><creatorcontrib>Wellem, Theophilus</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computer applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nataliani, Yessica</au><au>Wellem, Theophilus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HTTP Traffic Graph Clustering using Markov Clustering Algorithm</atitle><jtitle>International journal of computer applications</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>90</volume><issue>2</issue><spage>37</spage><epage>41</epage><pages>37-41</pages><issn>0975-8887</issn><eissn>0975-8887</eissn><abstract>Graph-based techniques and analysis have been used for IP network traffic analysis. The objective of this paper is to study the hosts' interaction behavior and use graph clustering algorithm, the Markov clustering algorithm, to group (cluster) hosts which have interaction using the HTTP protocol. Using real network traces, the clustering results show that MCL algorithm successfully group the hosts to their corresponding clusters. Analyzing the clustering results, it is showed that communications between one source IP address to one destination IP address, one source IP address to several (different) destination IP addresses, and several (different) source IP addresses to one destination IP address, are grouped to their own clusters.</abstract><cop>New York</cop><pub>Foundation of Computer Science</pub><doi>10.5120/15549-4344</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0975-8887
ispartof International journal of computer applications, 2014-01, Vol.90 (2), p.37-41
issn 0975-8887
0975-8887
language eng
recordid cdi_proquest_miscellaneous_1520971693
source Freely Accessible Science Journals
subjects Algorithms
Clustering
Clusters
Graphs
IP (Internet Protocol)
Markov processes
Networks
Traffic engineering
title HTTP Traffic Graph Clustering using Markov Clustering Algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A18%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HTTP%20Traffic%20Graph%20Clustering%20using%20Markov%20Clustering%20Algorithm&rft.jtitle=International%20journal%20of%20computer%20applications&rft.au=Nataliani,%20Yessica&rft.date=2014-01-01&rft.volume=90&rft.issue=2&rft.spage=37&rft.epage=41&rft.pages=37-41&rft.issn=0975-8887&rft.eissn=0975-8887&rft_id=info:doi/10.5120/15549-4344&rft_dat=%3Cproquest_cross%3E3235549641%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1734-65539b5c520de8b2c99105c8c5a02dd549f9a149ad3acb6b4a351bab91432df33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1503782629&rft_id=info:pmid/&rfr_iscdi=true