Loading…

Design and Experimental Study on the Controllable High-Speed Spiral Groove Face Seals

The spiral groove face seal is a prime candidate for application of the liquid oxygen and liquid hydrogen turbopump. The study investigated the designs of the electro-magnetic loading device (EMLD) and friction torque testing device (FTTD), and their application in the interface experiments of face...

Full description

Saved in:
Bibliographic Details
Published in:Tribology letters 2014-02, Vol.53 (2), p.497-509
Main Authors: Zhang, Guo-yuan, Zhao, Wei-gang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The spiral groove face seal is a prime candidate for application of the liquid oxygen and liquid hydrogen turbopump. The study investigated the designs of the electro-magnetic loading device (EMLD) and friction torque testing device (FTTD), and their application in the interface experiments of face seals with spiral grooves which used water as the sealing fluid. The seal performance parameters, including face temperature, face friction torque, film pressure at the seal dam, were measured under the static balance position, and the effects of the face closing force, which varied with the axial load generated from the EMLD, on the seal performance were tested under a specific controlled mode. The result indicated that both the pressure at the seal dam and face temperature increased with the rotating speed and that small friction was obtained when the face seal was fully film-lubricated. The separation speed of the controllable seal could also be controlled, which helped seal faces lift off and met the conditions of the face noncontact status. Additionally, with the application of the EMLD and FTTD, seal operation monitoring was rendered possible and a controllable face seal with desirable performance was achieved. The findings of the current study lend great insights into engineering seal design and its applications.
ISSN:1023-8883
1573-2711
DOI:10.1007/s11249-013-0291-y