Loading…

PIM kinases are essential for chronic lymphocytic leukemia cell survival (PIM2/3) and CXCR4-mediated microenvironmental interactions (PIM1)

Overexpression of the CXCR4 receptor is a hallmark of chronic lymphocytic leukemia (CLL) and is important for CLL cell survival, migration, and interaction with their protective microenvironment. In acute myelogenous leukemia (AML), PIM1 was shown to regulate the surface expression of the CXCR4 rece...

Full description

Saved in:
Bibliographic Details
Published in:Molecular cancer therapeutics 2014-05, Vol.13 (5), p.1231-1245
Main Authors: Decker, Sarah, Finter, Johannes, Forde, Aaron James, Kissel, Sandra, Schwaller, Juerg, Mack, Thomas Sebastian, Kuhn, Anabel, Gray, Nathanael, Follo, Marie, Jumaa, Hassan, Burger, Meike, Zirlik, Katja, Pfeifer, Dietmar, Miduturu, Chandrasekhar V, Eibel, Hermann, Veelken, Hendrik, Dierks, Christine
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c362t-61363c7f52497902bcadb3799818f48f7b16e219ad3b0563865a4fe8dfd9c55e3
cites cdi_FETCH-LOGICAL-c362t-61363c7f52497902bcadb3799818f48f7b16e219ad3b0563865a4fe8dfd9c55e3
container_end_page 1245
container_issue 5
container_start_page 1231
container_title Molecular cancer therapeutics
container_volume 13
creator Decker, Sarah
Finter, Johannes
Forde, Aaron James
Kissel, Sandra
Schwaller, Juerg
Mack, Thomas Sebastian
Kuhn, Anabel
Gray, Nathanael
Follo, Marie
Jumaa, Hassan
Burger, Meike
Zirlik, Katja
Pfeifer, Dietmar
Miduturu, Chandrasekhar V
Eibel, Hermann
Veelken, Hendrik
Dierks, Christine
description Overexpression of the CXCR4 receptor is a hallmark of chronic lymphocytic leukemia (CLL) and is important for CLL cell survival, migration, and interaction with their protective microenvironment. In acute myelogenous leukemia (AML), PIM1 was shown to regulate the surface expression of the CXCR4 receptor. Here, we show that PIM (proviral integration site for Moloney murine leukemia virus) kinases 1-3 are overexpressed and that the CXCR4 receptor is hyperphosphorylated on Ser339 in CLL compared with normal lymphocytes. Furthermore, CXCR4 phosphorylation correlates with PIM1 protein expression and PIM1 transcript levels in CLL. PIM kinase inhibition with three different PIM kinase inhibitors induced apoptosis in CLL cells independent of the presence of protective stromal cells. In addition, PIM inhibition caused dephosphorylation of the CXCR4 receptor on Ser339, resulting in enhanced ligand-dependent CXCR4 internalization and reduced re-externalization after withdrawal of CXCL12. Furthermore, PIM inhibition in CLL cells blocked CXCR4 functions, such as migration toward CXCL12- or CXCL12-induced extracellular signal-regulated kinase (ERK) phosphorylation. In concordance, pretreatment of CLL cells with PIM kinase inhibitors strongly reduced homing of CLL cells toward the bone marrow and the spleen of Rag2(-/-)γc(-/-) mice in vivo. Interestingly, the knockdown of PIM kinases in CLL cells demonstrated diverging functions, with PIM1 regulating CXCR4 surface expression and PIM2 and PIM3 as important for the survival of CLL cells. Our results show that PIM kinase inhibitors are an effective therapeutic option for CLL, not only by impairing PIM2/3-mediated CLL cell survival, but also by blocking the PIM1/CXCR4-mediated interaction of CLL cells with their protective microenvironment.
doi_str_mv 10.1158/1535-7163.MCT-13-0575-T
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1522680819</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1522680819</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-61363c7f52497902bcadb3799818f48f7b16e219ad3b0563865a4fe8dfd9c55e3</originalsourceid><addsrcrecordid>eNo9kc1O3DAUhS3UCijlFVovYWHItWPHXlYRbZFAraqpxM5ynBvhkp-pnYw0z9CXrsMAK1_J3zm-PoeQz1BcAUh9DVJIVoESV_f1hoFghawk2xyR03yjmZZQvnueD9QJ-ZDSn6IAbTgckxNeKmk0h1Py7-ftPX0Ko0uYqItIMSUc5-B62k2R-sc4jcHTfj9sHye_n9cZlyccgqMe-56mJe7CLuMX2Ylfi0vqxpbWD_Wvkg3YBjdjS4fg44TjLmS3IdtnPIwzRufnMI3pWQuXH8n7zvUJz1_OM_L7682m_s7ufny7rb_cMS8Un5kCoYSvOslLU5mCN961jaiM0aC7UndVAwo5GNeKppBKaCVd2aFuu9Z4KVGckYuD7zZOfxdMsx1CWj_jRpyWZEFyrnShwWS0OqB5_5QidnYbw-Di3kJh1ybsmrFdM7a5CQvCrk3YTVZ-enlkaXIOb7rX6MV_H-OFTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1522680819</pqid></control><display><type>article</type><title>PIM kinases are essential for chronic lymphocytic leukemia cell survival (PIM2/3) and CXCR4-mediated microenvironmental interactions (PIM1)</title><source>EZB Electronic Journals Library</source><creator>Decker, Sarah ; Finter, Johannes ; Forde, Aaron James ; Kissel, Sandra ; Schwaller, Juerg ; Mack, Thomas Sebastian ; Kuhn, Anabel ; Gray, Nathanael ; Follo, Marie ; Jumaa, Hassan ; Burger, Meike ; Zirlik, Katja ; Pfeifer, Dietmar ; Miduturu, Chandrasekhar V ; Eibel, Hermann ; Veelken, Hendrik ; Dierks, Christine</creator><creatorcontrib>Decker, Sarah ; Finter, Johannes ; Forde, Aaron James ; Kissel, Sandra ; Schwaller, Juerg ; Mack, Thomas Sebastian ; Kuhn, Anabel ; Gray, Nathanael ; Follo, Marie ; Jumaa, Hassan ; Burger, Meike ; Zirlik, Katja ; Pfeifer, Dietmar ; Miduturu, Chandrasekhar V ; Eibel, Hermann ; Veelken, Hendrik ; Dierks, Christine</creatorcontrib><description>Overexpression of the CXCR4 receptor is a hallmark of chronic lymphocytic leukemia (CLL) and is important for CLL cell survival, migration, and interaction with their protective microenvironment. In acute myelogenous leukemia (AML), PIM1 was shown to regulate the surface expression of the CXCR4 receptor. Here, we show that PIM (proviral integration site for Moloney murine leukemia virus) kinases 1-3 are overexpressed and that the CXCR4 receptor is hyperphosphorylated on Ser339 in CLL compared with normal lymphocytes. Furthermore, CXCR4 phosphorylation correlates with PIM1 protein expression and PIM1 transcript levels in CLL. PIM kinase inhibition with three different PIM kinase inhibitors induced apoptosis in CLL cells independent of the presence of protective stromal cells. In addition, PIM inhibition caused dephosphorylation of the CXCR4 receptor on Ser339, resulting in enhanced ligand-dependent CXCR4 internalization and reduced re-externalization after withdrawal of CXCL12. Furthermore, PIM inhibition in CLL cells blocked CXCR4 functions, such as migration toward CXCL12- or CXCL12-induced extracellular signal-regulated kinase (ERK) phosphorylation. In concordance, pretreatment of CLL cells with PIM kinase inhibitors strongly reduced homing of CLL cells toward the bone marrow and the spleen of Rag2(-/-)γc(-/-) mice in vivo. Interestingly, the knockdown of PIM kinases in CLL cells demonstrated diverging functions, with PIM1 regulating CXCR4 surface expression and PIM2 and PIM3 as important for the survival of CLL cells. Our results show that PIM kinase inhibitors are an effective therapeutic option for CLL, not only by impairing PIM2/3-mediated CLL cell survival, but also by blocking the PIM1/CXCR4-mediated interaction of CLL cells with their protective microenvironment.</description><identifier>ISSN: 1535-7163</identifier><identifier>EISSN: 1538-8514</identifier><identifier>DOI: 10.1158/1535-7163.MCT-13-0575-T</identifier><identifier>PMID: 24659821</identifier><language>eng</language><publisher>United States</publisher><subject>Animals ; Apoptosis - drug effects ; Apoptosis - genetics ; Bone Marrow - metabolism ; Cell Line, Tumor ; Cell Membrane - metabolism ; Cell Movement - drug effects ; DNA-Binding Proteins - deficiency ; DNA-Binding Proteins - genetics ; Extracellular Signal-Regulated MAP Kinases - metabolism ; Gene Expression ; Gene Knockdown Techniques ; Humans ; Leukemia, Lymphocytic, Chronic, B-Cell - metabolism ; Leukemia, Lymphocytic, Chronic, B-Cell - pathology ; Mice ; Mice, Knockout ; Nuclear Proteins - deficiency ; Nuclear Proteins - genetics ; Phosphorylation ; Protein Binding ; Protein Kinase Inhibitors - pharmacology ; Protein-Serine-Threonine Kinases - genetics ; Protein-Serine-Threonine Kinases - metabolism ; Proto-Oncogene Proteins - genetics ; Proto-Oncogene Proteins - metabolism ; Proto-Oncogene Proteins c-pim-1 - antagonists &amp; inhibitors ; Proto-Oncogene Proteins c-pim-1 - genetics ; Proto-Oncogene Proteins c-pim-1 - metabolism ; Receptors, CXCR4 - metabolism ; RNA, Small Interfering - genetics ; Spleen - metabolism ; Stromal Cells - drug effects ; Stromal Cells - metabolism ; Tumor Microenvironment</subject><ispartof>Molecular cancer therapeutics, 2014-05, Vol.13 (5), p.1231-1245</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-61363c7f52497902bcadb3799818f48f7b16e219ad3b0563865a4fe8dfd9c55e3</citedby><cites>FETCH-LOGICAL-c362t-61363c7f52497902bcadb3799818f48f7b16e219ad3b0563865a4fe8dfd9c55e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24659821$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Decker, Sarah</creatorcontrib><creatorcontrib>Finter, Johannes</creatorcontrib><creatorcontrib>Forde, Aaron James</creatorcontrib><creatorcontrib>Kissel, Sandra</creatorcontrib><creatorcontrib>Schwaller, Juerg</creatorcontrib><creatorcontrib>Mack, Thomas Sebastian</creatorcontrib><creatorcontrib>Kuhn, Anabel</creatorcontrib><creatorcontrib>Gray, Nathanael</creatorcontrib><creatorcontrib>Follo, Marie</creatorcontrib><creatorcontrib>Jumaa, Hassan</creatorcontrib><creatorcontrib>Burger, Meike</creatorcontrib><creatorcontrib>Zirlik, Katja</creatorcontrib><creatorcontrib>Pfeifer, Dietmar</creatorcontrib><creatorcontrib>Miduturu, Chandrasekhar V</creatorcontrib><creatorcontrib>Eibel, Hermann</creatorcontrib><creatorcontrib>Veelken, Hendrik</creatorcontrib><creatorcontrib>Dierks, Christine</creatorcontrib><title>PIM kinases are essential for chronic lymphocytic leukemia cell survival (PIM2/3) and CXCR4-mediated microenvironmental interactions (PIM1)</title><title>Molecular cancer therapeutics</title><addtitle>Mol Cancer Ther</addtitle><description>Overexpression of the CXCR4 receptor is a hallmark of chronic lymphocytic leukemia (CLL) and is important for CLL cell survival, migration, and interaction with their protective microenvironment. In acute myelogenous leukemia (AML), PIM1 was shown to regulate the surface expression of the CXCR4 receptor. Here, we show that PIM (proviral integration site for Moloney murine leukemia virus) kinases 1-3 are overexpressed and that the CXCR4 receptor is hyperphosphorylated on Ser339 in CLL compared with normal lymphocytes. Furthermore, CXCR4 phosphorylation correlates with PIM1 protein expression and PIM1 transcript levels in CLL. PIM kinase inhibition with three different PIM kinase inhibitors induced apoptosis in CLL cells independent of the presence of protective stromal cells. In addition, PIM inhibition caused dephosphorylation of the CXCR4 receptor on Ser339, resulting in enhanced ligand-dependent CXCR4 internalization and reduced re-externalization after withdrawal of CXCL12. Furthermore, PIM inhibition in CLL cells blocked CXCR4 functions, such as migration toward CXCL12- or CXCL12-induced extracellular signal-regulated kinase (ERK) phosphorylation. In concordance, pretreatment of CLL cells with PIM kinase inhibitors strongly reduced homing of CLL cells toward the bone marrow and the spleen of Rag2(-/-)γc(-/-) mice in vivo. Interestingly, the knockdown of PIM kinases in CLL cells demonstrated diverging functions, with PIM1 regulating CXCR4 surface expression and PIM2 and PIM3 as important for the survival of CLL cells. Our results show that PIM kinase inhibitors are an effective therapeutic option for CLL, not only by impairing PIM2/3-mediated CLL cell survival, but also by blocking the PIM1/CXCR4-mediated interaction of CLL cells with their protective microenvironment.</description><subject>Animals</subject><subject>Apoptosis - drug effects</subject><subject>Apoptosis - genetics</subject><subject>Bone Marrow - metabolism</subject><subject>Cell Line, Tumor</subject><subject>Cell Membrane - metabolism</subject><subject>Cell Movement - drug effects</subject><subject>DNA-Binding Proteins - deficiency</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Extracellular Signal-Regulated MAP Kinases - metabolism</subject><subject>Gene Expression</subject><subject>Gene Knockdown Techniques</subject><subject>Humans</subject><subject>Leukemia, Lymphocytic, Chronic, B-Cell - metabolism</subject><subject>Leukemia, Lymphocytic, Chronic, B-Cell - pathology</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Nuclear Proteins - deficiency</subject><subject>Nuclear Proteins - genetics</subject><subject>Phosphorylation</subject><subject>Protein Binding</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Proto-Oncogene Proteins - genetics</subject><subject>Proto-Oncogene Proteins - metabolism</subject><subject>Proto-Oncogene Proteins c-pim-1 - antagonists &amp; inhibitors</subject><subject>Proto-Oncogene Proteins c-pim-1 - genetics</subject><subject>Proto-Oncogene Proteins c-pim-1 - metabolism</subject><subject>Receptors, CXCR4 - metabolism</subject><subject>RNA, Small Interfering - genetics</subject><subject>Spleen - metabolism</subject><subject>Stromal Cells - drug effects</subject><subject>Stromal Cells - metabolism</subject><subject>Tumor Microenvironment</subject><issn>1535-7163</issn><issn>1538-8514</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kc1O3DAUhS3UCijlFVovYWHItWPHXlYRbZFAraqpxM5ynBvhkp-pnYw0z9CXrsMAK1_J3zm-PoeQz1BcAUh9DVJIVoESV_f1hoFghawk2xyR03yjmZZQvnueD9QJ-ZDSn6IAbTgckxNeKmk0h1Py7-ftPX0Ko0uYqItIMSUc5-B62k2R-sc4jcHTfj9sHye_n9cZlyccgqMe-56mJe7CLuMX2Ylfi0vqxpbWD_Wvkg3YBjdjS4fg44TjLmS3IdtnPIwzRufnMI3pWQuXH8n7zvUJz1_OM_L7682m_s7ufny7rb_cMS8Un5kCoYSvOslLU5mCN961jaiM0aC7UndVAwo5GNeKppBKaCVd2aFuu9Z4KVGckYuD7zZOfxdMsx1CWj_jRpyWZEFyrnShwWS0OqB5_5QidnYbw-Di3kJh1ybsmrFdM7a5CQvCrk3YTVZ-enlkaXIOb7rX6MV_H-OFTg</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Decker, Sarah</creator><creator>Finter, Johannes</creator><creator>Forde, Aaron James</creator><creator>Kissel, Sandra</creator><creator>Schwaller, Juerg</creator><creator>Mack, Thomas Sebastian</creator><creator>Kuhn, Anabel</creator><creator>Gray, Nathanael</creator><creator>Follo, Marie</creator><creator>Jumaa, Hassan</creator><creator>Burger, Meike</creator><creator>Zirlik, Katja</creator><creator>Pfeifer, Dietmar</creator><creator>Miduturu, Chandrasekhar V</creator><creator>Eibel, Hermann</creator><creator>Veelken, Hendrik</creator><creator>Dierks, Christine</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140501</creationdate><title>PIM kinases are essential for chronic lymphocytic leukemia cell survival (PIM2/3) and CXCR4-mediated microenvironmental interactions (PIM1)</title><author>Decker, Sarah ; Finter, Johannes ; Forde, Aaron James ; Kissel, Sandra ; Schwaller, Juerg ; Mack, Thomas Sebastian ; Kuhn, Anabel ; Gray, Nathanael ; Follo, Marie ; Jumaa, Hassan ; Burger, Meike ; Zirlik, Katja ; Pfeifer, Dietmar ; Miduturu, Chandrasekhar V ; Eibel, Hermann ; Veelken, Hendrik ; Dierks, Christine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-61363c7f52497902bcadb3799818f48f7b16e219ad3b0563865a4fe8dfd9c55e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animals</topic><topic>Apoptosis - drug effects</topic><topic>Apoptosis - genetics</topic><topic>Bone Marrow - metabolism</topic><topic>Cell Line, Tumor</topic><topic>Cell Membrane - metabolism</topic><topic>Cell Movement - drug effects</topic><topic>DNA-Binding Proteins - deficiency</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Extracellular Signal-Regulated MAP Kinases - metabolism</topic><topic>Gene Expression</topic><topic>Gene Knockdown Techniques</topic><topic>Humans</topic><topic>Leukemia, Lymphocytic, Chronic, B-Cell - metabolism</topic><topic>Leukemia, Lymphocytic, Chronic, B-Cell - pathology</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Nuclear Proteins - deficiency</topic><topic>Nuclear Proteins - genetics</topic><topic>Phosphorylation</topic><topic>Protein Binding</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Proto-Oncogene Proteins - genetics</topic><topic>Proto-Oncogene Proteins - metabolism</topic><topic>Proto-Oncogene Proteins c-pim-1 - antagonists &amp; inhibitors</topic><topic>Proto-Oncogene Proteins c-pim-1 - genetics</topic><topic>Proto-Oncogene Proteins c-pim-1 - metabolism</topic><topic>Receptors, CXCR4 - metabolism</topic><topic>RNA, Small Interfering - genetics</topic><topic>Spleen - metabolism</topic><topic>Stromal Cells - drug effects</topic><topic>Stromal Cells - metabolism</topic><topic>Tumor Microenvironment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Decker, Sarah</creatorcontrib><creatorcontrib>Finter, Johannes</creatorcontrib><creatorcontrib>Forde, Aaron James</creatorcontrib><creatorcontrib>Kissel, Sandra</creatorcontrib><creatorcontrib>Schwaller, Juerg</creatorcontrib><creatorcontrib>Mack, Thomas Sebastian</creatorcontrib><creatorcontrib>Kuhn, Anabel</creatorcontrib><creatorcontrib>Gray, Nathanael</creatorcontrib><creatorcontrib>Follo, Marie</creatorcontrib><creatorcontrib>Jumaa, Hassan</creatorcontrib><creatorcontrib>Burger, Meike</creatorcontrib><creatorcontrib>Zirlik, Katja</creatorcontrib><creatorcontrib>Pfeifer, Dietmar</creatorcontrib><creatorcontrib>Miduturu, Chandrasekhar V</creatorcontrib><creatorcontrib>Eibel, Hermann</creatorcontrib><creatorcontrib>Veelken, Hendrik</creatorcontrib><creatorcontrib>Dierks, Christine</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular cancer therapeutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Decker, Sarah</au><au>Finter, Johannes</au><au>Forde, Aaron James</au><au>Kissel, Sandra</au><au>Schwaller, Juerg</au><au>Mack, Thomas Sebastian</au><au>Kuhn, Anabel</au><au>Gray, Nathanael</au><au>Follo, Marie</au><au>Jumaa, Hassan</au><au>Burger, Meike</au><au>Zirlik, Katja</au><au>Pfeifer, Dietmar</au><au>Miduturu, Chandrasekhar V</au><au>Eibel, Hermann</au><au>Veelken, Hendrik</au><au>Dierks, Christine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PIM kinases are essential for chronic lymphocytic leukemia cell survival (PIM2/3) and CXCR4-mediated microenvironmental interactions (PIM1)</atitle><jtitle>Molecular cancer therapeutics</jtitle><addtitle>Mol Cancer Ther</addtitle><date>2014-05-01</date><risdate>2014</risdate><volume>13</volume><issue>5</issue><spage>1231</spage><epage>1245</epage><pages>1231-1245</pages><issn>1535-7163</issn><eissn>1538-8514</eissn><abstract>Overexpression of the CXCR4 receptor is a hallmark of chronic lymphocytic leukemia (CLL) and is important for CLL cell survival, migration, and interaction with their protective microenvironment. In acute myelogenous leukemia (AML), PIM1 was shown to regulate the surface expression of the CXCR4 receptor. Here, we show that PIM (proviral integration site for Moloney murine leukemia virus) kinases 1-3 are overexpressed and that the CXCR4 receptor is hyperphosphorylated on Ser339 in CLL compared with normal lymphocytes. Furthermore, CXCR4 phosphorylation correlates with PIM1 protein expression and PIM1 transcript levels in CLL. PIM kinase inhibition with three different PIM kinase inhibitors induced apoptosis in CLL cells independent of the presence of protective stromal cells. In addition, PIM inhibition caused dephosphorylation of the CXCR4 receptor on Ser339, resulting in enhanced ligand-dependent CXCR4 internalization and reduced re-externalization after withdrawal of CXCL12. Furthermore, PIM inhibition in CLL cells blocked CXCR4 functions, such as migration toward CXCL12- or CXCL12-induced extracellular signal-regulated kinase (ERK) phosphorylation. In concordance, pretreatment of CLL cells with PIM kinase inhibitors strongly reduced homing of CLL cells toward the bone marrow and the spleen of Rag2(-/-)γc(-/-) mice in vivo. Interestingly, the knockdown of PIM kinases in CLL cells demonstrated diverging functions, with PIM1 regulating CXCR4 surface expression and PIM2 and PIM3 as important for the survival of CLL cells. Our results show that PIM kinase inhibitors are an effective therapeutic option for CLL, not only by impairing PIM2/3-mediated CLL cell survival, but also by blocking the PIM1/CXCR4-mediated interaction of CLL cells with their protective microenvironment.</abstract><cop>United States</cop><pmid>24659821</pmid><doi>10.1158/1535-7163.MCT-13-0575-T</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1535-7163
ispartof Molecular cancer therapeutics, 2014-05, Vol.13 (5), p.1231-1245
issn 1535-7163
1538-8514
language eng
recordid cdi_proquest_miscellaneous_1522680819
source EZB Electronic Journals Library
subjects Animals
Apoptosis - drug effects
Apoptosis - genetics
Bone Marrow - metabolism
Cell Line, Tumor
Cell Membrane - metabolism
Cell Movement - drug effects
DNA-Binding Proteins - deficiency
DNA-Binding Proteins - genetics
Extracellular Signal-Regulated MAP Kinases - metabolism
Gene Expression
Gene Knockdown Techniques
Humans
Leukemia, Lymphocytic, Chronic, B-Cell - metabolism
Leukemia, Lymphocytic, Chronic, B-Cell - pathology
Mice
Mice, Knockout
Nuclear Proteins - deficiency
Nuclear Proteins - genetics
Phosphorylation
Protein Binding
Protein Kinase Inhibitors - pharmacology
Protein-Serine-Threonine Kinases - genetics
Protein-Serine-Threonine Kinases - metabolism
Proto-Oncogene Proteins - genetics
Proto-Oncogene Proteins - metabolism
Proto-Oncogene Proteins c-pim-1 - antagonists & inhibitors
Proto-Oncogene Proteins c-pim-1 - genetics
Proto-Oncogene Proteins c-pim-1 - metabolism
Receptors, CXCR4 - metabolism
RNA, Small Interfering - genetics
Spleen - metabolism
Stromal Cells - drug effects
Stromal Cells - metabolism
Tumor Microenvironment
title PIM kinases are essential for chronic lymphocytic leukemia cell survival (PIM2/3) and CXCR4-mediated microenvironmental interactions (PIM1)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A09%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PIM%20kinases%20are%20essential%20for%20chronic%20lymphocytic%20leukemia%20cell%20survival%20(PIM2/3)%20and%20CXCR4-mediated%20microenvironmental%20interactions%20(PIM1)&rft.jtitle=Molecular%20cancer%20therapeutics&rft.au=Decker,%20Sarah&rft.date=2014-05-01&rft.volume=13&rft.issue=5&rft.spage=1231&rft.epage=1245&rft.pages=1231-1245&rft.issn=1535-7163&rft.eissn=1538-8514&rft_id=info:doi/10.1158/1535-7163.MCT-13-0575-T&rft_dat=%3Cproquest_cross%3E1522680819%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-61363c7f52497902bcadb3799818f48f7b16e219ad3b0563865a4fe8dfd9c55e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1522680819&rft_id=info:pmid/24659821&rfr_iscdi=true