Loading…
Stellatolides, a New Cyclodepsipeptide Family from the Sponge Ecionemia acervus: Isolation, Solid-Phase Total Synthesis, and Full Structural Assignment of Stellatolide A
The marine environment is a rich source of metabolites with potential therapeutic properties and applications for humans. Here we describe the first isolation, solid-phase total synthesis, and full structural assignment of a new class of cyclodepsipeptides from the Madagascan sponge Ecionemia acervu...
Saved in:
Published in: | Journal of the American Chemical Society 2014-05, Vol.136 (18), p.6754-6762 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The marine environment is a rich source of metabolites with potential therapeutic properties and applications for humans. Here we describe the first isolation, solid-phase total synthesis, and full structural assignment of a new class of cyclodepsipeptides from the Madagascan sponge Ecionemia acervus that shows in vitro cytotoxic activities at submicromolar concentrations. Seven structures belonging to a new family of compounds, given the general name stellatolides, were characterized. The sequence and stereochemistry of all the amino acids in these molecules were established by a combination of spectroscopic analysis, chemical degradation, and derivatization studies. Furthermore, the complete structure of stellatolide A was confirmed by an efficient solid-phase method for the first total synthesis and the full structural assignment of this molecule, including the asymmetric synthesis of the unique β-hydroxy acid moiety (Z)-3-hydroxy-6,8-dimethylnon-4-enoic acid. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja502744a |