Loading…

Distinct magnetic phase transition at the surface of an antiferromagnet

In the majority of magnetic systems the surface is required to order at the same temperature as the bulk. In the present Letter, we report a distinct and unexpected surface magnetic phase transition at a lower temperature than the Néel temperature. Employing grazing incidence x-ray resonant magnetic...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2014-04, Vol.112 (16), p.167201-167201, Article 167201
Main Authors: Langridge, S, Watson, G M, Gibbs, D, Betouras, J J, Gidopoulos, N I, Pollmann, F, Long, M W, Vettier, C, Lander, G H
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the majority of magnetic systems the surface is required to order at the same temperature as the bulk. In the present Letter, we report a distinct and unexpected surface magnetic phase transition at a lower temperature than the Néel temperature. Employing grazing incidence x-ray resonant magnetic scattering, we have observed the near-surface behavior of uranium dioxide. UO2 is a noncollinear, triple-q, antiferromagnet with the U ions on a face-centered cubic lattice. Theoretical investigations establish that at the surface the energy increase-due to the lost bonds-is reduced when the spins near the surface rotate, gradually losing their component normal to the surface. At the surface the lowest-energy spin configuration has a double-q (planar) structure. With increasing temperature, thermal fluctuations saturate the in-plane crystal field anisotropy at the surface, leading to soft excitations that have ferromagnetic XY character and are decoupled from the bulk. The structure factor of a finite two-dimensional XY model fits the experimental data well for several orders of magnitude of the scattered intensity. Our results support a distinct magnetic transition at the surface in the Kosterlitz-Thouless universality class.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.112.167201