Loading…

Determination of the hoop fracture properties of unirradiated hydrogen-charged nuclear fuel cladding from ring compression tests

In this work, a new methodology is devised to obtain the fracture properties of nuclear fuel cladding in the hoop direction. The proposed method combines ring compression tests and a finite element method that includes a damage model based on cohesive crack theory, applied to unirradiated hydrogen-c...

Full description

Saved in:
Bibliographic Details
Published in:Journal of nuclear materials 2013-05, Vol.436 (1-3), p.123-129
Main Authors: Martin-Rengel, M.A., Gómez Sánchez, F.J., Ruiz-Hervías, J., Caballero, L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c452t-45cd626e73f5a32eee6f5b85578ee7c62186f7941c5d47ebce5135b430f71e0c3
cites cdi_FETCH-LOGICAL-c452t-45cd626e73f5a32eee6f5b85578ee7c62186f7941c5d47ebce5135b430f71e0c3
container_end_page 129
container_issue 1-3
container_start_page 123
container_title Journal of nuclear materials
container_volume 436
creator Martin-Rengel, M.A.
Gómez Sánchez, F.J.
Ruiz-Hervías, J.
Caballero, L.
description In this work, a new methodology is devised to obtain the fracture properties of nuclear fuel cladding in the hoop direction. The proposed method combines ring compression tests and a finite element method that includes a damage model based on cohesive crack theory, applied to unirradiated hydrogen-charged ZIRLOTM nuclear fuel cladding. Samples with hydrogen concentrations from 0 to 2000ppm were tested at 20°C. Agreement between the finite element simulations and the experimental results is excellent in all cases. The parameters of the cohesive crack model are obtained from the simulations, with the fracture energy and fracture toughness being calculated in turn. The evolution of fracture toughness in the hoop direction with the hydrogen concentration (up to 2000ppm) is reported for the first time for ZIRLOTM cladding. Additionally, the fracture micromechanisms are examined as a function of the hydrogen concentration. In the as-received samples, the micromechanism is the nucleation, growth and coalescence of voids, whereas in the samples with 2000ppm, a combination of cuasicleavage and plastic deformation, along with secondary microcracking is observed.
doi_str_mv 10.1016/j.jnucmat.2013.01.311
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1524395325</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311513003528</els_id><sourcerecordid>1475542100</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-45cd626e73f5a32eee6f5b85578ee7c62186f7941c5d47ebce5135b430f71e0c3</originalsourceid><addsrcrecordid>eNqFUU2LFDEQDaLguPoThFwEL92bz07PSWRddWHBi55DJqnMZOhO2iQt7M2fbpoZvO6piqpX9V7VQ-g9JT0ldLg99-e42tnUnhHKe0J7TukLtKOj4p0YGXmJdoQw1rWyfI3elHImhMg9kTv09wtUyHOIpoYUcfK4ngCfUlqwz8bWNQNeclog1wBl668x5GxcMBUcPj25nI4QO3sy-dgKTcgEJmO_woTtZJwL8dhWpRnnLbNpXjKUspFVKLW8Ra-8mQq8u8Yb9Ovr_c-7793jj28Pd58fOyskq52Q1g1sAMW9NJwBwODlYZRSjQDKDoyOg1d7Qa10QsHBgqRcHgQnXlEglt-gj5e97Zrfa2PWcygWpslESGvRVDLB95Iz-TxUKCkFo4Q0qLxAbU6lZPB6yWE2-UlTojdz9FlfzdGbOZpQ3Vxocx-uFKZYM7VXRxvK_2GmmGB7vkn5dMFBe82fAFkXGyBacCGDrdql8AzTP7Stqno</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1475542100</pqid></control><display><type>article</type><title>Determination of the hoop fracture properties of unirradiated hydrogen-charged nuclear fuel cladding from ring compression tests</title><source>Elsevier</source><creator>Martin-Rengel, M.A. ; Gómez Sánchez, F.J. ; Ruiz-Hervías, J. ; Caballero, L.</creator><creatorcontrib>Martin-Rengel, M.A. ; Gómez Sánchez, F.J. ; Ruiz-Hervías, J. ; Caballero, L.</creatorcontrib><description>In this work, a new methodology is devised to obtain the fracture properties of nuclear fuel cladding in the hoop direction. The proposed method combines ring compression tests and a finite element method that includes a damage model based on cohesive crack theory, applied to unirradiated hydrogen-charged ZIRLOTM nuclear fuel cladding. Samples with hydrogen concentrations from 0 to 2000ppm were tested at 20°C. Agreement between the finite element simulations and the experimental results is excellent in all cases. The parameters of the cohesive crack model are obtained from the simulations, with the fracture energy and fracture toughness being calculated in turn. The evolution of fracture toughness in the hoop direction with the hydrogen concentration (up to 2000ppm) is reported for the first time for ZIRLOTM cladding. Additionally, the fracture micromechanisms are examined as a function of the hydrogen concentration. In the as-received samples, the micromechanism is the nucleation, growth and coalescence of voids, whereas in the samples with 2000ppm, a combination of cuasicleavage and plastic deformation, along with secondary microcracking is observed.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2013.01.311</identifier><identifier>CODEN: JNUMAM</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Controled nuclear fusion plants ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fission nuclear power plants ; Fuels ; Installations for energy generation and conversion: thermal and electrical energy ; Nuclear fuels ; Preparation and processing of nuclear fuels</subject><ispartof>Journal of nuclear materials, 2013-05, Vol.436 (1-3), p.123-129</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-45cd626e73f5a32eee6f5b85578ee7c62186f7941c5d47ebce5135b430f71e0c3</citedby><cites>FETCH-LOGICAL-c452t-45cd626e73f5a32eee6f5b85578ee7c62186f7941c5d47ebce5135b430f71e0c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27242935$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Martin-Rengel, M.A.</creatorcontrib><creatorcontrib>Gómez Sánchez, F.J.</creatorcontrib><creatorcontrib>Ruiz-Hervías, J.</creatorcontrib><creatorcontrib>Caballero, L.</creatorcontrib><title>Determination of the hoop fracture properties of unirradiated hydrogen-charged nuclear fuel cladding from ring compression tests</title><title>Journal of nuclear materials</title><description>In this work, a new methodology is devised to obtain the fracture properties of nuclear fuel cladding in the hoop direction. The proposed method combines ring compression tests and a finite element method that includes a damage model based on cohesive crack theory, applied to unirradiated hydrogen-charged ZIRLOTM nuclear fuel cladding. Samples with hydrogen concentrations from 0 to 2000ppm were tested at 20°C. Agreement between the finite element simulations and the experimental results is excellent in all cases. The parameters of the cohesive crack model are obtained from the simulations, with the fracture energy and fracture toughness being calculated in turn. The evolution of fracture toughness in the hoop direction with the hydrogen concentration (up to 2000ppm) is reported for the first time for ZIRLOTM cladding. Additionally, the fracture micromechanisms are examined as a function of the hydrogen concentration. In the as-received samples, the micromechanism is the nucleation, growth and coalescence of voids, whereas in the samples with 2000ppm, a combination of cuasicleavage and plastic deformation, along with secondary microcracking is observed.</description><subject>Applied sciences</subject><subject>Controled nuclear fusion plants</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fission nuclear power plants</subject><subject>Fuels</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Nuclear fuels</subject><subject>Preparation and processing of nuclear fuels</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFUU2LFDEQDaLguPoThFwEL92bz07PSWRddWHBi55DJqnMZOhO2iQt7M2fbpoZvO6piqpX9V7VQ-g9JT0ldLg99-e42tnUnhHKe0J7TukLtKOj4p0YGXmJdoQw1rWyfI3elHImhMg9kTv09wtUyHOIpoYUcfK4ngCfUlqwz8bWNQNeclog1wBl668x5GxcMBUcPj25nI4QO3sy-dgKTcgEJmO_woTtZJwL8dhWpRnnLbNpXjKUspFVKLW8Ra-8mQq8u8Yb9Ovr_c-7793jj28Pd58fOyskq52Q1g1sAMW9NJwBwODlYZRSjQDKDoyOg1d7Qa10QsHBgqRcHgQnXlEglt-gj5e97Zrfa2PWcygWpslESGvRVDLB95Iz-TxUKCkFo4Q0qLxAbU6lZPB6yWE2-UlTojdz9FlfzdGbOZpQ3Vxocx-uFKZYM7VXRxvK_2GmmGB7vkn5dMFBe82fAFkXGyBacCGDrdql8AzTP7Stqno</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Martin-Rengel, M.A.</creator><creator>Gómez Sánchez, F.J.</creator><creator>Ruiz-Hervías, J.</creator><creator>Caballero, L.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20130501</creationdate><title>Determination of the hoop fracture properties of unirradiated hydrogen-charged nuclear fuel cladding from ring compression tests</title><author>Martin-Rengel, M.A. ; Gómez Sánchez, F.J. ; Ruiz-Hervías, J. ; Caballero, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-45cd626e73f5a32eee6f5b85578ee7c62186f7941c5d47ebce5135b430f71e0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Controled nuclear fusion plants</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fission nuclear power plants</topic><topic>Fuels</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Nuclear fuels</topic><topic>Preparation and processing of nuclear fuels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martin-Rengel, M.A.</creatorcontrib><creatorcontrib>Gómez Sánchez, F.J.</creatorcontrib><creatorcontrib>Ruiz-Hervías, J.</creatorcontrib><creatorcontrib>Caballero, L.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martin-Rengel, M.A.</au><au>Gómez Sánchez, F.J.</au><au>Ruiz-Hervías, J.</au><au>Caballero, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Determination of the hoop fracture properties of unirradiated hydrogen-charged nuclear fuel cladding from ring compression tests</atitle><jtitle>Journal of nuclear materials</jtitle><date>2013-05-01</date><risdate>2013</risdate><volume>436</volume><issue>1-3</issue><spage>123</spage><epage>129</epage><pages>123-129</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><coden>JNUMAM</coden><abstract>In this work, a new methodology is devised to obtain the fracture properties of nuclear fuel cladding in the hoop direction. The proposed method combines ring compression tests and a finite element method that includes a damage model based on cohesive crack theory, applied to unirradiated hydrogen-charged ZIRLOTM nuclear fuel cladding. Samples with hydrogen concentrations from 0 to 2000ppm were tested at 20°C. Agreement between the finite element simulations and the experimental results is excellent in all cases. The parameters of the cohesive crack model are obtained from the simulations, with the fracture energy and fracture toughness being calculated in turn. The evolution of fracture toughness in the hoop direction with the hydrogen concentration (up to 2000ppm) is reported for the first time for ZIRLOTM cladding. Additionally, the fracture micromechanisms are examined as a function of the hydrogen concentration. In the as-received samples, the micromechanism is the nucleation, growth and coalescence of voids, whereas in the samples with 2000ppm, a combination of cuasicleavage and plastic deformation, along with secondary microcracking is observed.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2013.01.311</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3115
ispartof Journal of nuclear materials, 2013-05, Vol.436 (1-3), p.123-129
issn 0022-3115
1873-4820
language eng
recordid cdi_proquest_miscellaneous_1524395325
source Elsevier
subjects Applied sciences
Controled nuclear fusion plants
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Fission nuclear power plants
Fuels
Installations for energy generation and conversion: thermal and electrical energy
Nuclear fuels
Preparation and processing of nuclear fuels
title Determination of the hoop fracture properties of unirradiated hydrogen-charged nuclear fuel cladding from ring compression tests
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A51%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Determination%20of%20the%20hoop%20fracture%20properties%20of%20unirradiated%20hydrogen-charged%20nuclear%20fuel%20cladding%20from%20ring%20compression%20tests&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Martin-Rengel,%20M.A.&rft.date=2013-05-01&rft.volume=436&rft.issue=1-3&rft.spage=123&rft.epage=129&rft.pages=123-129&rft.issn=0022-3115&rft.eissn=1873-4820&rft.coden=JNUMAM&rft_id=info:doi/10.1016/j.jnucmat.2013.01.311&rft_dat=%3Cproquest_cross%3E1475542100%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c452t-45cd626e73f5a32eee6f5b85578ee7c62186f7941c5d47ebce5135b430f71e0c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1475542100&rft_id=info:pmid/&rfr_iscdi=true