Loading…

Sintering behavior of UO2–Gd2O3 fuel: Pore formation mechanism

The incorporation of Gd2O3 has a harmful effect on traditional UO2 sintering behavior. Above 1200°C, the sintering rate decreases and the final sintered density is significantly lower. Some effort has been made to investigate the mechanism that could explain this abnormal sintering behavior of UO2–G...

Full description

Saved in:
Bibliographic Details
Published in:Journal of nuclear materials 2013-02, Vol.433 (1-3), p.334-340
Main Authors: Durazzo, M., Saliba-Silva, A.M., Urano de Carvalho, E.F., Riella, H.G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c372t-97a35557c0f3a0d0c0c7e841bd67695819b83a866fa8979fe6fba80b18d416443
cites cdi_FETCH-LOGICAL-c372t-97a35557c0f3a0d0c0c7e841bd67695819b83a866fa8979fe6fba80b18d416443
container_end_page 340
container_issue 1-3
container_start_page 334
container_title Journal of nuclear materials
container_volume 433
creator Durazzo, M.
Saliba-Silva, A.M.
Urano de Carvalho, E.F.
Riella, H.G.
description The incorporation of Gd2O3 has a harmful effect on traditional UO2 sintering behavior. Above 1200°C, the sintering rate decreases and the final sintered density is significantly lower. Some effort has been made to investigate the mechanism that could explain this abnormal sintering behavior of UO2–Gd2O3 mixed fuel. A previous work concluded that the sintering difficulties of UO2–Gd2O3 fuel cannot be explained by the formation of Gd-rich (U,Gd)O2 phases with low diffusivity (diffusion barrier). This work investigates a new mechanism based on stable pore formation. Experimental observations show that gadolinium from Gd2O3 agglomerates preferentially diffuse into the UO2 phase. The UO2 matrix expands to receive extra gadolinium cations and a void is generated at the original Gd2O3 agglomerate site. Pores are generated when solid solution occurs in the intermediate sintering stage, making their removal more difficult in the final sintering stage. The new pores remain in the pellets after sintering.
doi_str_mv 10.1016/j.jnucmat.2012.09.033
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1524404283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311512005107</els_id><sourcerecordid>1524404283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-97a35557c0f3a0d0c0c7e841bd67695819b83a866fa8979fe6fba80b18d416443</originalsourceid><addsrcrecordid>eNqFkMtKxTAQhoMoeLw8gtCN4KZ1cmtTNyriDYQjqOuQphPNoW006RHc-Q6-oU9i5RzcCgOz-f75mY-QAwoFBVoeL4rFsLS9GQsGlBVQF8D5BplRVfFcKAabZAbAWM4pldtkJ6UFAMga5IycPfhhxOiH56zBF_PuQ8yCy57m7Pvz67plc565JXYn2X2ImLkQpxofhqxH-2IGn_o9suVMl3B_vXfJ09Xl48VNfje_vr04v8str9iY15XhUsrKguMGWrBgK1SCNm1ZlbVUtG4UN6osnVF1VTssXWMUNFS1gpZC8F1ytLr7GsPbEtOoe58sdp0ZMCyTppIJAYIpPqFyhdoYUoro9Gv0vYkfmoL-NaYXem1M_xrTUOvJ2JQ7XFeYZE3nohmsT39hVoHg00zc6YrD6d93j1En63Gw2PqIdtRt8P80_QBUK4MD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1524404283</pqid></control><display><type>article</type><title>Sintering behavior of UO2–Gd2O3 fuel: Pore formation mechanism</title><source>ScienceDirect Freedom Collection</source><creator>Durazzo, M. ; Saliba-Silva, A.M. ; Urano de Carvalho, E.F. ; Riella, H.G.</creator><creatorcontrib>Durazzo, M. ; Saliba-Silva, A.M. ; Urano de Carvalho, E.F. ; Riella, H.G.</creatorcontrib><description>The incorporation of Gd2O3 has a harmful effect on traditional UO2 sintering behavior. Above 1200°C, the sintering rate decreases and the final sintered density is significantly lower. Some effort has been made to investigate the mechanism that could explain this abnormal sintering behavior of UO2–Gd2O3 mixed fuel. A previous work concluded that the sintering difficulties of UO2–Gd2O3 fuel cannot be explained by the formation of Gd-rich (U,Gd)O2 phases with low diffusivity (diffusion barrier). This work investigates a new mechanism based on stable pore formation. Experimental observations show that gadolinium from Gd2O3 agglomerates preferentially diffuse into the UO2 phase. The UO2 matrix expands to receive extra gadolinium cations and a void is generated at the original Gd2O3 agglomerate site. Pores are generated when solid solution occurs in the intermediate sintering stage, making their removal more difficult in the final sintering stage. The new pores remain in the pellets after sintering.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2012.09.033</identifier><identifier>CODEN: JNUMAM</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Controled nuclear fusion plants ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fission nuclear power plants ; Fuels ; Installations for energy generation and conversion: thermal and electrical energy ; Nuclear fuels</subject><ispartof>Journal of nuclear materials, 2013-02, Vol.433 (1-3), p.334-340</ispartof><rights>2012 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-97a35557c0f3a0d0c0c7e841bd67695819b83a866fa8979fe6fba80b18d416443</citedby><cites>FETCH-LOGICAL-c372t-97a35557c0f3a0d0c0c7e841bd67695819b83a866fa8979fe6fba80b18d416443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27043043$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Durazzo, M.</creatorcontrib><creatorcontrib>Saliba-Silva, A.M.</creatorcontrib><creatorcontrib>Urano de Carvalho, E.F.</creatorcontrib><creatorcontrib>Riella, H.G.</creatorcontrib><title>Sintering behavior of UO2–Gd2O3 fuel: Pore formation mechanism</title><title>Journal of nuclear materials</title><description>The incorporation of Gd2O3 has a harmful effect on traditional UO2 sintering behavior. Above 1200°C, the sintering rate decreases and the final sintered density is significantly lower. Some effort has been made to investigate the mechanism that could explain this abnormal sintering behavior of UO2–Gd2O3 mixed fuel. A previous work concluded that the sintering difficulties of UO2–Gd2O3 fuel cannot be explained by the formation of Gd-rich (U,Gd)O2 phases with low diffusivity (diffusion barrier). This work investigates a new mechanism based on stable pore formation. Experimental observations show that gadolinium from Gd2O3 agglomerates preferentially diffuse into the UO2 phase. The UO2 matrix expands to receive extra gadolinium cations and a void is generated at the original Gd2O3 agglomerate site. Pores are generated when solid solution occurs in the intermediate sintering stage, making their removal more difficult in the final sintering stage. The new pores remain in the pellets after sintering.</description><subject>Applied sciences</subject><subject>Controled nuclear fusion plants</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fission nuclear power plants</subject><subject>Fuels</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Nuclear fuels</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKxTAQhoMoeLw8gtCN4KZ1cmtTNyriDYQjqOuQphPNoW006RHc-Q6-oU9i5RzcCgOz-f75mY-QAwoFBVoeL4rFsLS9GQsGlBVQF8D5BplRVfFcKAabZAbAWM4pldtkJ6UFAMga5IycPfhhxOiH56zBF_PuQ8yCy57m7Pvz67plc565JXYn2X2ImLkQpxofhqxH-2IGn_o9suVMl3B_vXfJ09Xl48VNfje_vr04v8str9iY15XhUsrKguMGWrBgK1SCNm1ZlbVUtG4UN6osnVF1VTssXWMUNFS1gpZC8F1ytLr7GsPbEtOoe58sdp0ZMCyTppIJAYIpPqFyhdoYUoro9Gv0vYkfmoL-NaYXem1M_xrTUOvJ2JQ7XFeYZE3nohmsT39hVoHg00zc6YrD6d93j1En63Gw2PqIdtRt8P80_QBUK4MD</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Durazzo, M.</creator><creator>Saliba-Silva, A.M.</creator><creator>Urano de Carvalho, E.F.</creator><creator>Riella, H.G.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20130201</creationdate><title>Sintering behavior of UO2–Gd2O3 fuel: Pore formation mechanism</title><author>Durazzo, M. ; Saliba-Silva, A.M. ; Urano de Carvalho, E.F. ; Riella, H.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-97a35557c0f3a0d0c0c7e841bd67695819b83a866fa8979fe6fba80b18d416443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Controled nuclear fusion plants</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fission nuclear power plants</topic><topic>Fuels</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Nuclear fuels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Durazzo, M.</creatorcontrib><creatorcontrib>Saliba-Silva, A.M.</creatorcontrib><creatorcontrib>Urano de Carvalho, E.F.</creatorcontrib><creatorcontrib>Riella, H.G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Durazzo, M.</au><au>Saliba-Silva, A.M.</au><au>Urano de Carvalho, E.F.</au><au>Riella, H.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sintering behavior of UO2–Gd2O3 fuel: Pore formation mechanism</atitle><jtitle>Journal of nuclear materials</jtitle><date>2013-02-01</date><risdate>2013</risdate><volume>433</volume><issue>1-3</issue><spage>334</spage><epage>340</epage><pages>334-340</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><coden>JNUMAM</coden><abstract>The incorporation of Gd2O3 has a harmful effect on traditional UO2 sintering behavior. Above 1200°C, the sintering rate decreases and the final sintered density is significantly lower. Some effort has been made to investigate the mechanism that could explain this abnormal sintering behavior of UO2–Gd2O3 mixed fuel. A previous work concluded that the sintering difficulties of UO2–Gd2O3 fuel cannot be explained by the formation of Gd-rich (U,Gd)O2 phases with low diffusivity (diffusion barrier). This work investigates a new mechanism based on stable pore formation. Experimental observations show that gadolinium from Gd2O3 agglomerates preferentially diffuse into the UO2 phase. The UO2 matrix expands to receive extra gadolinium cations and a void is generated at the original Gd2O3 agglomerate site. Pores are generated when solid solution occurs in the intermediate sintering stage, making their removal more difficult in the final sintering stage. The new pores remain in the pellets after sintering.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2012.09.033</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3115
ispartof Journal of nuclear materials, 2013-02, Vol.433 (1-3), p.334-340
issn 0022-3115
1873-4820
language eng
recordid cdi_proquest_miscellaneous_1524404283
source ScienceDirect Freedom Collection
subjects Applied sciences
Controled nuclear fusion plants
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Fission nuclear power plants
Fuels
Installations for energy generation and conversion: thermal and electrical energy
Nuclear fuels
title Sintering behavior of UO2–Gd2O3 fuel: Pore formation mechanism
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A32%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sintering%20behavior%20of%20UO2%E2%80%93Gd2O3%20fuel:%20Pore%20formation%20mechanism&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Durazzo,%20M.&rft.date=2013-02-01&rft.volume=433&rft.issue=1-3&rft.spage=334&rft.epage=340&rft.pages=334-340&rft.issn=0022-3115&rft.eissn=1873-4820&rft.coden=JNUMAM&rft_id=info:doi/10.1016/j.jnucmat.2012.09.033&rft_dat=%3Cproquest_cross%3E1524404283%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-97a35557c0f3a0d0c0c7e841bd67695819b83a866fa8979fe6fba80b18d416443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1524404283&rft_id=info:pmid/&rfr_iscdi=true