Loading…
Strong (Type 0) Phase Resetting of Activity-Rest Rhythm in Fruit Flies, Drosophila Melanogaster, at Low Temperature
Amplitude modulation in limit cycle models of circadian clocks has been previously formulated to explain the phenomenon of temperature compensation. These models propose that invariance of clock period (τ) with changing temperature is a result of the system traversing small or large limit cycles suc...
Saved in:
Published in: | Journal of biological rhythms 2013-12, Vol.28 (6), p.380-389 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c464t-97a451aefe26ad72f2bf37fb6e756d58735e0cd7d02e6468142c18c773b640423 |
---|---|
cites | cdi_FETCH-LOGICAL-c464t-97a451aefe26ad72f2bf37fb6e756d58735e0cd7d02e6468142c18c773b640423 |
container_end_page | 389 |
container_issue | 6 |
container_start_page | 380 |
container_title | Journal of biological rhythms |
container_volume | 28 |
creator | Varma, Vishwanath Mukherjee, Narendra Kannan, Nisha N. Sharma, Vijay Kumar |
description | Amplitude modulation in limit cycle models of circadian clocks has been previously formulated to explain the phenomenon of temperature compensation. These models propose that invariance of clock period (τ) with changing temperature is a result of the system traversing small or large limit cycles such that despite a decrease or an increase in the linear velocity of the clock owing to slowing down or speeding up of the underlying biochemical reactions, respectively, the angular velocity and, thus, the clock period remain constant. In addition, these models predict that phase resetting behavior of circadian clocks described by limit cycles of different amplitudes at low or high temperatures will be drastically different. More specifically, this class of models predicts that at low temperatures, circadian clocks will respond to perturbations by eliciting larger phase shifts by virtue of their smaller amplitude and vice versa. Here, we present the results of our tests of this prediction: We examined the nature of photic phase response curves (PRCs) and phase transition curves (PTCs) for the circadian clocks of 4 wild-type fruit fly Drosophila melanogaster populations at 3 different ambient temperatures (18, 25, and 29 °C). Interestingly, we observed that at the low temperature of 18 °C, fly clocks respond to light perturbations more strongly, eliciting strong (type 0) PRCs and PTCs, while at moderate (25 °C) and high (29 °C) temperatures the same stimuli evoke weak (type 1) responses. This pattern of strong and weak phase resetting at low and high temperatures, respectively, renders support for the limit cycle amplitude modulation model for temperature compensation of circadian clocks. |
doi_str_mv | 10.1177/0748730413508922 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1524406487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0748730413508922</sage_id><sourcerecordid>1524406487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-97a451aefe26ad72f2bf37fb6e756d58735e0cd7d02e6468142c18c773b640423</originalsourceid><addsrcrecordid>eNqFkUtrGzEUhUVJaFy3-66CIBsXMqne8ixNWicBhxTXXQ_yzB1bYcaaSJoU__vK2A3BELIS6Hz33MdB6CslV5Rq_Z1oMdacCMolGeeMfUADKiXLhOT0BA12crbTz9CnEB4JISoX_CM6Y4JzJagaoPA7erdZ4dFi2wEm3_CvtQmA5xAgRpsEV-NJGe2zjdss_UY8X2_jusV2g6e-txFPGwvhEv_wLrhubRuD76ExG7cyIYK_xCbimfuLF9B24E3sPXxGp7VpAnw5vEP0Z_pzcX2bzR5u7q4ns6wUSsQs10ZIaqAGpkylWc2WNdf1UoGWqpJpcQmkrHRFGCihxlSwko5LrflSCSIYH6LR3rfz7qlPsxetDSU0aTpwfSioZEIQtTvhu6jQqSnViib04gh9dL3fpEUSlfOcaKXzRJE9Vaa7BA910XnbGr8tKCl22RXH2aWS84Nxv2yhein4H1YCsj0QzApedX3L8B8p1J6G</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1493907679</pqid></control><display><type>article</type><title>Strong (Type 0) Phase Resetting of Activity-Rest Rhythm in Fruit Flies, Drosophila Melanogaster, at Low Temperature</title><source>Sage Journals Online</source><creator>Varma, Vishwanath ; Mukherjee, Narendra ; Kannan, Nisha N. ; Sharma, Vijay Kumar</creator><creatorcontrib>Varma, Vishwanath ; Mukherjee, Narendra ; Kannan, Nisha N. ; Sharma, Vijay Kumar</creatorcontrib><description>Amplitude modulation in limit cycle models of circadian clocks has been previously formulated to explain the phenomenon of temperature compensation. These models propose that invariance of clock period (τ) with changing temperature is a result of the system traversing small or large limit cycles such that despite a decrease or an increase in the linear velocity of the clock owing to slowing down or speeding up of the underlying biochemical reactions, respectively, the angular velocity and, thus, the clock period remain constant. In addition, these models predict that phase resetting behavior of circadian clocks described by limit cycles of different amplitudes at low or high temperatures will be drastically different. More specifically, this class of models predicts that at low temperatures, circadian clocks will respond to perturbations by eliciting larger phase shifts by virtue of their smaller amplitude and vice versa. Here, we present the results of our tests of this prediction: We examined the nature of photic phase response curves (PRCs) and phase transition curves (PTCs) for the circadian clocks of 4 wild-type fruit fly Drosophila melanogaster populations at 3 different ambient temperatures (18, 25, and 29 °C). Interestingly, we observed that at the low temperature of 18 °C, fly clocks respond to light perturbations more strongly, eliciting strong (type 0) PRCs and PTCs, while at moderate (25 °C) and high (29 °C) temperatures the same stimuli evoke weak (type 1) responses. This pattern of strong and weak phase resetting at low and high temperatures, respectively, renders support for the limit cycle amplitude modulation model for temperature compensation of circadian clocks.</description><identifier>ISSN: 0748-7304</identifier><identifier>EISSN: 1552-4531</identifier><identifier>DOI: 10.1177/0748730413508922</identifier><identifier>PMID: 24336416</identifier><identifier>CODEN: JBRHEE</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Animal behavior ; Animals ; Biochemistry ; Circadian rhythm ; Circadian Rhythm - physiology ; Drosophila melanogaster ; Drosophila melanogaster - physiology ; Female ; Insects ; Light ; Male ; Models, Biological ; Motor Activity - physiology ; Motor Activity - radiation effects ; Photoperiod ; Temperature</subject><ispartof>Journal of biological rhythms, 2013-12, Vol.28 (6), p.380-389</ispartof><rights>2013 The Author(s)</rights><rights>Copyright SAGE PUBLICATIONS, INC. Dec 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-97a451aefe26ad72f2bf37fb6e756d58735e0cd7d02e6468142c18c773b640423</citedby><cites>FETCH-LOGICAL-c464t-97a451aefe26ad72f2bf37fb6e756d58735e0cd7d02e6468142c18c773b640423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,79364</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24336416$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Varma, Vishwanath</creatorcontrib><creatorcontrib>Mukherjee, Narendra</creatorcontrib><creatorcontrib>Kannan, Nisha N.</creatorcontrib><creatorcontrib>Sharma, Vijay Kumar</creatorcontrib><title>Strong (Type 0) Phase Resetting of Activity-Rest Rhythm in Fruit Flies, Drosophila Melanogaster, at Low Temperature</title><title>Journal of biological rhythms</title><addtitle>J Biol Rhythms</addtitle><description>Amplitude modulation in limit cycle models of circadian clocks has been previously formulated to explain the phenomenon of temperature compensation. These models propose that invariance of clock period (τ) with changing temperature is a result of the system traversing small or large limit cycles such that despite a decrease or an increase in the linear velocity of the clock owing to slowing down or speeding up of the underlying biochemical reactions, respectively, the angular velocity and, thus, the clock period remain constant. In addition, these models predict that phase resetting behavior of circadian clocks described by limit cycles of different amplitudes at low or high temperatures will be drastically different. More specifically, this class of models predicts that at low temperatures, circadian clocks will respond to perturbations by eliciting larger phase shifts by virtue of their smaller amplitude and vice versa. Here, we present the results of our tests of this prediction: We examined the nature of photic phase response curves (PRCs) and phase transition curves (PTCs) for the circadian clocks of 4 wild-type fruit fly Drosophila melanogaster populations at 3 different ambient temperatures (18, 25, and 29 °C). Interestingly, we observed that at the low temperature of 18 °C, fly clocks respond to light perturbations more strongly, eliciting strong (type 0) PRCs and PTCs, while at moderate (25 °C) and high (29 °C) temperatures the same stimuli evoke weak (type 1) responses. This pattern of strong and weak phase resetting at low and high temperatures, respectively, renders support for the limit cycle amplitude modulation model for temperature compensation of circadian clocks.</description><subject>Animal behavior</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Circadian rhythm</subject><subject>Circadian Rhythm - physiology</subject><subject>Drosophila melanogaster</subject><subject>Drosophila melanogaster - physiology</subject><subject>Female</subject><subject>Insects</subject><subject>Light</subject><subject>Male</subject><subject>Models, Biological</subject><subject>Motor Activity - physiology</subject><subject>Motor Activity - radiation effects</subject><subject>Photoperiod</subject><subject>Temperature</subject><issn>0748-7304</issn><issn>1552-4531</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkUtrGzEUhUVJaFy3-66CIBsXMqne8ixNWicBhxTXXQ_yzB1bYcaaSJoU__vK2A3BELIS6Hz33MdB6CslV5Rq_Z1oMdacCMolGeeMfUADKiXLhOT0BA12crbTz9CnEB4JISoX_CM6Y4JzJagaoPA7erdZ4dFi2wEm3_CvtQmA5xAgRpsEV-NJGe2zjdss_UY8X2_jusV2g6e-txFPGwvhEv_wLrhubRuD76ExG7cyIYK_xCbimfuLF9B24E3sPXxGp7VpAnw5vEP0Z_pzcX2bzR5u7q4ns6wUSsQs10ZIaqAGpkylWc2WNdf1UoGWqpJpcQmkrHRFGCihxlSwko5LrflSCSIYH6LR3rfz7qlPsxetDSU0aTpwfSioZEIQtTvhu6jQqSnViib04gh9dL3fpEUSlfOcaKXzRJE9Vaa7BA910XnbGr8tKCl22RXH2aWS84Nxv2yhein4H1YCsj0QzApedX3L8B8p1J6G</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Varma, Vishwanath</creator><creator>Mukherjee, Narendra</creator><creator>Kannan, Nisha N.</creator><creator>Sharma, Vijay Kumar</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7SS</scope></search><sort><creationdate>20131201</creationdate><title>Strong (Type 0) Phase Resetting of Activity-Rest Rhythm in Fruit Flies, Drosophila Melanogaster, at Low Temperature</title><author>Varma, Vishwanath ; Mukherjee, Narendra ; Kannan, Nisha N. ; Sharma, Vijay Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-97a451aefe26ad72f2bf37fb6e756d58735e0cd7d02e6468142c18c773b640423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animal behavior</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Circadian rhythm</topic><topic>Circadian Rhythm - physiology</topic><topic>Drosophila melanogaster</topic><topic>Drosophila melanogaster - physiology</topic><topic>Female</topic><topic>Insects</topic><topic>Light</topic><topic>Male</topic><topic>Models, Biological</topic><topic>Motor Activity - physiology</topic><topic>Motor Activity - radiation effects</topic><topic>Photoperiod</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Varma, Vishwanath</creatorcontrib><creatorcontrib>Mukherjee, Narendra</creatorcontrib><creatorcontrib>Kannan, Nisha N.</creatorcontrib><creatorcontrib>Sharma, Vijay Kumar</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Entomology Abstracts (Full archive)</collection><jtitle>Journal of biological rhythms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Varma, Vishwanath</au><au>Mukherjee, Narendra</au><au>Kannan, Nisha N.</au><au>Sharma, Vijay Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong (Type 0) Phase Resetting of Activity-Rest Rhythm in Fruit Flies, Drosophila Melanogaster, at Low Temperature</atitle><jtitle>Journal of biological rhythms</jtitle><addtitle>J Biol Rhythms</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>28</volume><issue>6</issue><spage>380</spage><epage>389</epage><pages>380-389</pages><issn>0748-7304</issn><eissn>1552-4531</eissn><coden>JBRHEE</coden><abstract>Amplitude modulation in limit cycle models of circadian clocks has been previously formulated to explain the phenomenon of temperature compensation. These models propose that invariance of clock period (τ) with changing temperature is a result of the system traversing small or large limit cycles such that despite a decrease or an increase in the linear velocity of the clock owing to slowing down or speeding up of the underlying biochemical reactions, respectively, the angular velocity and, thus, the clock period remain constant. In addition, these models predict that phase resetting behavior of circadian clocks described by limit cycles of different amplitudes at low or high temperatures will be drastically different. More specifically, this class of models predicts that at low temperatures, circadian clocks will respond to perturbations by eliciting larger phase shifts by virtue of their smaller amplitude and vice versa. Here, we present the results of our tests of this prediction: We examined the nature of photic phase response curves (PRCs) and phase transition curves (PTCs) for the circadian clocks of 4 wild-type fruit fly Drosophila melanogaster populations at 3 different ambient temperatures (18, 25, and 29 °C). Interestingly, we observed that at the low temperature of 18 °C, fly clocks respond to light perturbations more strongly, eliciting strong (type 0) PRCs and PTCs, while at moderate (25 °C) and high (29 °C) temperatures the same stimuli evoke weak (type 1) responses. This pattern of strong and weak phase resetting at low and high temperatures, respectively, renders support for the limit cycle amplitude modulation model for temperature compensation of circadian clocks.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>24336416</pmid><doi>10.1177/0748730413508922</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0748-7304 |
ispartof | Journal of biological rhythms, 2013-12, Vol.28 (6), p.380-389 |
issn | 0748-7304 1552-4531 |
language | eng |
recordid | cdi_proquest_miscellaneous_1524406487 |
source | Sage Journals Online |
subjects | Animal behavior Animals Biochemistry Circadian rhythm Circadian Rhythm - physiology Drosophila melanogaster Drosophila melanogaster - physiology Female Insects Light Male Models, Biological Motor Activity - physiology Motor Activity - radiation effects Photoperiod Temperature |
title | Strong (Type 0) Phase Resetting of Activity-Rest Rhythm in Fruit Flies, Drosophila Melanogaster, at Low Temperature |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A10%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20(Type%200)%20Phase%20Resetting%20of%20Activity-Rest%20Rhythm%20in%20Fruit%20Flies,%20Drosophila%20Melanogaster,%20at%20Low%20Temperature&rft.jtitle=Journal%20of%20biological%20rhythms&rft.au=Varma,%20Vishwanath&rft.date=2013-12-01&rft.volume=28&rft.issue=6&rft.spage=380&rft.epage=389&rft.pages=380-389&rft.issn=0748-7304&rft.eissn=1552-4531&rft.coden=JBRHEE&rft_id=info:doi/10.1177/0748730413508922&rft_dat=%3Cproquest_cross%3E1524406487%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c464t-97a451aefe26ad72f2bf37fb6e756d58735e0cd7d02e6468142c18c773b640423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1493907679&rft_id=info:pmid/24336416&rft_sage_id=10.1177_0748730413508922&rfr_iscdi=true |