Loading…
Changes in global-mean precipitation in response to warming, greenhouse gas forcing and black carbon
Precipitation changes are a key driver of climate change impacts. On average, global precipitation is expected to increase with warming. However, model projections show that precipitation does not scale linearly with surface air temperature. Instead, global hydrological sensitivity, the relative cha...
Saved in:
Published in: | Geophysical research letters 2011-02, Vol.38 (4), p.np-n/a |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4748-c6be032a02e51f3c2ec3af5e5d4aa573f75f79dbdbe0c7b84b2b47f0088c0aca3 |
---|---|
cites | |
container_end_page | n/a |
container_issue | 4 |
container_start_page | np |
container_title | Geophysical research letters |
container_volume | 38 |
creator | Frieler, K. Meinshausen, M. Schneider von Deimling, T. Andrews, T. Forster, P. |
description | Precipitation changes are a key driver of climate change impacts. On average, global precipitation is expected to increase with warming. However, model projections show that precipitation does not scale linearly with surface air temperature. Instead, global hydrological sensitivity, the relative change of global‐mean precipitation per degree of global warming, seems to vary across different scenarios and even with time. Based on output from 20 coupled Atmosphere‐Ocean‐General‐Circulation‐Models for up to 7 different scenarios, we discuss to what extent these variations can be explained by changes in the tropospheric energy budget. Our analysis supports earlier findings that long‐ and shortwave absorbers initially decrease global‐mean precipitation. Including these absorbers into a multivariate scaling approach allows to closely reproduce the simulated global‐mean precipitation changes. We find a sensitivity of global‐mean precipitation to tropospheric greenhouse gas forcing of −0.42 ± 0.23%/(W/m2) (uncertainty given as one std of inter‐model variability) and to black carbon emissions of −0.07 ± 0.02%/(Mt/yr). In combination with these two predictors the dominant longer‐term effect of surface air temperatures on precipitation is estimated to be 2.2 ± 0.52%/K – much lower than the 6.5%/K that may be expected from the Clausius‐Clapeyron relationship. |
doi_str_mv | 10.1029/2010GL045953 |
format | article |
fullrecord | <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_1524419415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2704186991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4748-c6be032a02e51f3c2ec3af5e5d4aa573f75f79dbdbe0c7b84b2b47f0088c0aca3</originalsourceid><addsrcrecordid>eNpdkU9r3DAQxUVpodu0t34AQQn0UKejfyv7mCytk7KkUFJ6FGNZdpR4JUfykubbR2FDKD3NMPN7w-MNIR8ZnDDgzVcODNotSNUo8YqsWCNlVQPo12QF0JSe6_Vb8i7nGwAQINiK9JtrDKPL1Ac6TrHDqdo5DHROzvrZL7j4GJ6WyeU5huzoEuk9pp0P4xc6JufCddyX8YiZDjHZMqcYetpNaG-pxdTF8J68GXDK7sNzPSK_v3-72pxX25_txeZ0W1mpZV3ZdedAcATuFBuE5c4KHJRTvURUWgxaDbrpu75gVne17Hgn9QBQ1xbQojginw935xTv9i4vZuezddOEwRWThikuZUmFqYJ--g-9ifsUijtTohRaiZJhoY6fKcwWpyFhsD6bOfkdpgfD65JqCbhw_MDd-8k9vOwZPB1rzL9_Me2vLdca6iKqDiKfF_f3RYTp1qx1cWD-XLamlZdXZ0r_MEI8AvHlkKc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1023753953</pqid></control><display><type>article</type><title>Changes in global-mean precipitation in response to warming, greenhouse gas forcing and black carbon</title><source>Wiley-Blackwell AGU Digital Archive</source><creator>Frieler, K. ; Meinshausen, M. ; Schneider von Deimling, T. ; Andrews, T. ; Forster, P.</creator><creatorcontrib>Frieler, K. ; Meinshausen, M. ; Schneider von Deimling, T. ; Andrews, T. ; Forster, P.</creatorcontrib><description>Precipitation changes are a key driver of climate change impacts. On average, global precipitation is expected to increase with warming. However, model projections show that precipitation does not scale linearly with surface air temperature. Instead, global hydrological sensitivity, the relative change of global‐mean precipitation per degree of global warming, seems to vary across different scenarios and even with time. Based on output from 20 coupled Atmosphere‐Ocean‐General‐Circulation‐Models for up to 7 different scenarios, we discuss to what extent these variations can be explained by changes in the tropospheric energy budget. Our analysis supports earlier findings that long‐ and shortwave absorbers initially decrease global‐mean precipitation. Including these absorbers into a multivariate scaling approach allows to closely reproduce the simulated global‐mean precipitation changes. We find a sensitivity of global‐mean precipitation to tropospheric greenhouse gas forcing of −0.42 ± 0.23%/(W/m2) (uncertainty given as one std of inter‐model variability) and to black carbon emissions of −0.07 ± 0.02%/(Mt/yr). In combination with these two predictors the dominant longer‐term effect of surface air temperatures on precipitation is estimated to be 2.2 ± 0.52%/K – much lower than the 6.5%/K that may be expected from the Clausius‐Clapeyron relationship.</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2010GL045953</identifier><identifier>CODEN: GPRLAJ</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Air pollution ; Air temperature ; Atmosphere ; Black carbon ; Carbon ; Climate change ; Earth ; Earth sciences ; Earth, ocean, space ; Energy budgets ; Environmental impact ; Exact sciences and technology ; GHG forcing ; Global warming ; Greenhouse effect ; Greenhouse gases ; hydrological sensitivity ; Precipitation ; Simulation ; Surface temperature ; Troposphere</subject><ispartof>Geophysical research letters, 2011-02, Vol.38 (4), p.np-n/a</ispartof><rights>Copyright 2011 by the American Geophysical Union.</rights><rights>2015 INIST-CNRS</rights><rights>Copyright 2011 by the American Geophysical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4748-c6be032a02e51f3c2ec3af5e5d4aa573f75f79dbdbe0c7b84b2b47f0088c0aca3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2010GL045953$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2010GL045953$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,11495,27905,27906,46449,46873</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28094800$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Frieler, K.</creatorcontrib><creatorcontrib>Meinshausen, M.</creatorcontrib><creatorcontrib>Schneider von Deimling, T.</creatorcontrib><creatorcontrib>Andrews, T.</creatorcontrib><creatorcontrib>Forster, P.</creatorcontrib><title>Changes in global-mean precipitation in response to warming, greenhouse gas forcing and black carbon</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>Precipitation changes are a key driver of climate change impacts. On average, global precipitation is expected to increase with warming. However, model projections show that precipitation does not scale linearly with surface air temperature. Instead, global hydrological sensitivity, the relative change of global‐mean precipitation per degree of global warming, seems to vary across different scenarios and even with time. Based on output from 20 coupled Atmosphere‐Ocean‐General‐Circulation‐Models for up to 7 different scenarios, we discuss to what extent these variations can be explained by changes in the tropospheric energy budget. Our analysis supports earlier findings that long‐ and shortwave absorbers initially decrease global‐mean precipitation. Including these absorbers into a multivariate scaling approach allows to closely reproduce the simulated global‐mean precipitation changes. We find a sensitivity of global‐mean precipitation to tropospheric greenhouse gas forcing of −0.42 ± 0.23%/(W/m2) (uncertainty given as one std of inter‐model variability) and to black carbon emissions of −0.07 ± 0.02%/(Mt/yr). In combination with these two predictors the dominant longer‐term effect of surface air temperatures on precipitation is estimated to be 2.2 ± 0.52%/K – much lower than the 6.5%/K that may be expected from the Clausius‐Clapeyron relationship.</description><subject>Air pollution</subject><subject>Air temperature</subject><subject>Atmosphere</subject><subject>Black carbon</subject><subject>Carbon</subject><subject>Climate change</subject><subject>Earth</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Energy budgets</subject><subject>Environmental impact</subject><subject>Exact sciences and technology</subject><subject>GHG forcing</subject><subject>Global warming</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>hydrological sensitivity</subject><subject>Precipitation</subject><subject>Simulation</subject><subject>Surface temperature</subject><subject>Troposphere</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNpdkU9r3DAQxUVpodu0t34AQQn0UKejfyv7mCytk7KkUFJ6FGNZdpR4JUfykubbR2FDKD3NMPN7w-MNIR8ZnDDgzVcODNotSNUo8YqsWCNlVQPo12QF0JSe6_Vb8i7nGwAQINiK9JtrDKPL1Ac6TrHDqdo5DHROzvrZL7j4GJ6WyeU5huzoEuk9pp0P4xc6JufCddyX8YiZDjHZMqcYetpNaG-pxdTF8J68GXDK7sNzPSK_v3-72pxX25_txeZ0W1mpZV3ZdedAcATuFBuE5c4KHJRTvURUWgxaDbrpu75gVne17Hgn9QBQ1xbQojginw935xTv9i4vZuezddOEwRWThikuZUmFqYJ--g-9ifsUijtTohRaiZJhoY6fKcwWpyFhsD6bOfkdpgfD65JqCbhw_MDd-8k9vOwZPB1rzL9_Me2vLdca6iKqDiKfF_f3RYTp1qx1cWD-XLamlZdXZ0r_MEI8AvHlkKc</recordid><startdate>201102</startdate><enddate>201102</enddate><creator>Frieler, K.</creator><creator>Meinshausen, M.</creator><creator>Schneider von Deimling, T.</creator><creator>Andrews, T.</creator><creator>Forster, P.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><general>John Wiley & Sons, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7SU</scope><scope>C1K</scope></search><sort><creationdate>201102</creationdate><title>Changes in global-mean precipitation in response to warming, greenhouse gas forcing and black carbon</title><author>Frieler, K. ; Meinshausen, M. ; Schneider von Deimling, T. ; Andrews, T. ; Forster, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4748-c6be032a02e51f3c2ec3af5e5d4aa573f75f79dbdbe0c7b84b2b47f0088c0aca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Air pollution</topic><topic>Air temperature</topic><topic>Atmosphere</topic><topic>Black carbon</topic><topic>Carbon</topic><topic>Climate change</topic><topic>Earth</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Energy budgets</topic><topic>Environmental impact</topic><topic>Exact sciences and technology</topic><topic>GHG forcing</topic><topic>Global warming</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>hydrological sensitivity</topic><topic>Precipitation</topic><topic>Simulation</topic><topic>Surface temperature</topic><topic>Troposphere</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frieler, K.</creatorcontrib><creatorcontrib>Meinshausen, M.</creatorcontrib><creatorcontrib>Schneider von Deimling, T.</creatorcontrib><creatorcontrib>Andrews, T.</creatorcontrib><creatorcontrib>Forster, P.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environmental Engineering Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frieler, K.</au><au>Meinshausen, M.</au><au>Schneider von Deimling, T.</au><au>Andrews, T.</au><au>Forster, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Changes in global-mean precipitation in response to warming, greenhouse gas forcing and black carbon</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2011-02</date><risdate>2011</risdate><volume>38</volume><issue>4</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><coden>GPRLAJ</coden><abstract>Precipitation changes are a key driver of climate change impacts. On average, global precipitation is expected to increase with warming. However, model projections show that precipitation does not scale linearly with surface air temperature. Instead, global hydrological sensitivity, the relative change of global‐mean precipitation per degree of global warming, seems to vary across different scenarios and even with time. Based on output from 20 coupled Atmosphere‐Ocean‐General‐Circulation‐Models for up to 7 different scenarios, we discuss to what extent these variations can be explained by changes in the tropospheric energy budget. Our analysis supports earlier findings that long‐ and shortwave absorbers initially decrease global‐mean precipitation. Including these absorbers into a multivariate scaling approach allows to closely reproduce the simulated global‐mean precipitation changes. We find a sensitivity of global‐mean precipitation to tropospheric greenhouse gas forcing of −0.42 ± 0.23%/(W/m2) (uncertainty given as one std of inter‐model variability) and to black carbon emissions of −0.07 ± 0.02%/(Mt/yr). In combination with these two predictors the dominant longer‐term effect of surface air temperatures on precipitation is estimated to be 2.2 ± 0.52%/K – much lower than the 6.5%/K that may be expected from the Clausius‐Clapeyron relationship.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2010GL045953</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2011-02, Vol.38 (4), p.np-n/a |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_proquest_miscellaneous_1524419415 |
source | Wiley-Blackwell AGU Digital Archive |
subjects | Air pollution Air temperature Atmosphere Black carbon Carbon Climate change Earth Earth sciences Earth, ocean, space Energy budgets Environmental impact Exact sciences and technology GHG forcing Global warming Greenhouse effect Greenhouse gases hydrological sensitivity Precipitation Simulation Surface temperature Troposphere |
title | Changes in global-mean precipitation in response to warming, greenhouse gas forcing and black carbon |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T00%3A28%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Changes%20in%20global-mean%20precipitation%20in%20response%20to%20warming,%20greenhouse%20gas%20forcing%20and%20black%20carbon&rft.jtitle=Geophysical%20research%20letters&rft.au=Frieler,%20K.&rft.date=2011-02&rft.volume=38&rft.issue=4&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft.coden=GPRLAJ&rft_id=info:doi/10.1029/2010GL045953&rft_dat=%3Cproquest_pasca%3E2704186991%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4748-c6be032a02e51f3c2ec3af5e5d4aa573f75f79dbdbe0c7b84b2b47f0088c0aca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1023753953&rft_id=info:pmid/&rfr_iscdi=true |