Loading…

Bioconversion of industrial solid waste—Cassava bagasse for pullulan production in solid state fermentation

•Pullulan produced by bioconversion of an industrial waste, cassava bagasse.•Initial pH influence cell morphology and hence pullulan yield.•FTIR, 1H-NMR and 13C-NMR confirm product.•Addition of supplementary carbon source, mannose improved yield.•Average molecular weight of pullulan produced was 9.8...

Full description

Saved in:
Bibliographic Details
Published in:Carbohydrate polymers 2014, Vol.99, p.22-30
Main Authors: Sugumaran, K.R., Jothi, P., Ponnusami, V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c428t-e0c12569eeec2367d48d4584ae885ba7c42380928794e72066a088786576f94b3
cites cdi_FETCH-LOGICAL-c428t-e0c12569eeec2367d48d4584ae885ba7c42380928794e72066a088786576f94b3
container_end_page 30
container_issue
container_start_page 22
container_title Carbohydrate polymers
container_volume 99
creator Sugumaran, K.R.
Jothi, P.
Ponnusami, V.
description •Pullulan produced by bioconversion of an industrial waste, cassava bagasse.•Initial pH influence cell morphology and hence pullulan yield.•FTIR, 1H-NMR and 13C-NMR confirm product.•Addition of supplementary carbon source, mannose improved yield.•Average molecular weight of pullulan produced was 9.8×106g/mol. The purpose of the work was to produce commercially important pullulan using industrial solid waste namely cassava bagasse in solid state fermentation and minimize the solid waste disposal problem. First, influence of initial pH on cell morphology and pullulan yield was studied. Effect of various factors like fermentation time, moisture ratio, nitrogen sources and particle size on pullulan yield was investigated. Various supplementary carbon sources (3%, w/w) namely glucose, sucrose, fructose, maltose, mannose and xylose with cassava bagasse was also studied to improve the pullulan yield. After screening the suitable supplement, effect of supplement concentration on pullulan production was investigated. The pullulan from cassava bagasse was characterized by FTIR, 1H-NMR and 13C-NMR. Molecular weight of pullulan from cassava bagasse was determined by gel permeation chromatography. Thus, cassava bagasse emerged to be a cheap and novel substrate for pullulan production.
doi_str_mv 10.1016/j.carbpol.2013.08.039
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1524423023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0144861713008230</els_id><sourcerecordid>1462183842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-e0c12569eeec2367d48d4584ae885ba7c42380928794e72066a088786576f94b3</originalsourceid><addsrcrecordid>eNqFkc3O1CAYhYnR-I2jl6DpxsRNK38FujI68S_5Eje6JpS-NUxoGXnbMe68CK_QK5HJVF1-bHgTnnM4cAh5ymjDKFMvj413uT-l2HDKRENNQ0V3j-yY0V3NhJT3yY4yKWujmL4hjxCPtCzF6ENywyXXUup2R6Y3Ifk0nyFjSHOVxirMw4pLDi5WmGIYqu8OF_j989fBIbqzq3r3tUxQjSlXpzXGNbq5OuU0rH65eIR5E-LiloJBnmAuYzl7TB6MLiI82fY9-fLu7efDh_r20_uPh9e3tZfcLDVQz3irOgDwXCg9SDPI1kgHxrS904UShna8PFWC5lQpR43RRrVajZ3sxZ68uPqWWN9WwMVOAT3EkhTSipa1XBYPysXdqFScGWEKviftFfU5IWYY7SmHyeUfllF7KcUe7VaKvZRiqbGllKJ7tl2x9hMM_1R_WyjA8w1w6F0cs5t9wP-coaLUKgv36spB-btzgGzRB5g9DCGDX-yQwh1R_gAkEq6u</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1462183842</pqid></control><display><type>article</type><title>Bioconversion of industrial solid waste—Cassava bagasse for pullulan production in solid state fermentation</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Sugumaran, K.R. ; Jothi, P. ; Ponnusami, V.</creator><creatorcontrib>Sugumaran, K.R. ; Jothi, P. ; Ponnusami, V.</creatorcontrib><description>•Pullulan produced by bioconversion of an industrial waste, cassava bagasse.•Initial pH influence cell morphology and hence pullulan yield.•FTIR, 1H-NMR and 13C-NMR confirm product.•Addition of supplementary carbon source, mannose improved yield.•Average molecular weight of pullulan produced was 9.8×106g/mol. The purpose of the work was to produce commercially important pullulan using industrial solid waste namely cassava bagasse in solid state fermentation and minimize the solid waste disposal problem. First, influence of initial pH on cell morphology and pullulan yield was studied. Effect of various factors like fermentation time, moisture ratio, nitrogen sources and particle size on pullulan yield was investigated. Various supplementary carbon sources (3%, w/w) namely glucose, sucrose, fructose, maltose, mannose and xylose with cassava bagasse was also studied to improve the pullulan yield. After screening the suitable supplement, effect of supplement concentration on pullulan production was investigated. The pullulan from cassava bagasse was characterized by FTIR, 1H-NMR and 13C-NMR. Molecular weight of pullulan from cassava bagasse was determined by gel permeation chromatography. Thus, cassava bagasse emerged to be a cheap and novel substrate for pullulan production.</description><identifier>ISSN: 0144-8617</identifier><identifier>EISSN: 1879-1344</identifier><identifier>DOI: 10.1016/j.carbpol.2013.08.039</identifier><identifier>PMID: 24274475</identifier><identifier>CODEN: CAPOD8</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Agriculture, rearing and food industries wastes ; Applied sciences ; Aureobasidium pullulans ; Bioconversions. Hemisynthesis ; Biological and medical sciences ; Biotechnology ; Carbon - metabolism ; Cassava bagasse ; Cellulose - chemistry ; Chromatography, Gel ; Culture Media - chemistry ; Disaccharides - metabolism ; Exact sciences and technology ; Fermentation ; Fundamental and applied biological sciences. Psychology ; Gel permeation chromatography ; Glucans - biosynthesis ; Hydrogen-Ion Concentration ; Magnetic Resonance Spectroscopy ; Manihot - chemistry ; Manihot esculenta ; Methods. Procedures. Technologies ; Monosaccharides - metabolism ; Morphology of cells ; Natural polymers ; Nitrogen - metabolism ; Physicochemistry of polymers ; Pollution ; Pullulan ; Saccharomycetales - metabolism ; Solid Waste ; Spectroscopy, Fourier Transform Infrared ; Starch and polysaccharides ; Wastes</subject><ispartof>Carbohydrate polymers, 2014, Vol.99, p.22-30</ispartof><rights>2013 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-e0c12569eeec2367d48d4584ae885ba7c42380928794e72066a088786576f94b3</citedby><cites>FETCH-LOGICAL-c428t-e0c12569eeec2367d48d4584ae885ba7c42380928794e72066a088786576f94b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,4010,27904,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28031874$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24274475$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sugumaran, K.R.</creatorcontrib><creatorcontrib>Jothi, P.</creatorcontrib><creatorcontrib>Ponnusami, V.</creatorcontrib><title>Bioconversion of industrial solid waste—Cassava bagasse for pullulan production in solid state fermentation</title><title>Carbohydrate polymers</title><addtitle>Carbohydr Polym</addtitle><description>•Pullulan produced by bioconversion of an industrial waste, cassava bagasse.•Initial pH influence cell morphology and hence pullulan yield.•FTIR, 1H-NMR and 13C-NMR confirm product.•Addition of supplementary carbon source, mannose improved yield.•Average molecular weight of pullulan produced was 9.8×106g/mol. The purpose of the work was to produce commercially important pullulan using industrial solid waste namely cassava bagasse in solid state fermentation and minimize the solid waste disposal problem. First, influence of initial pH on cell morphology and pullulan yield was studied. Effect of various factors like fermentation time, moisture ratio, nitrogen sources and particle size on pullulan yield was investigated. Various supplementary carbon sources (3%, w/w) namely glucose, sucrose, fructose, maltose, mannose and xylose with cassava bagasse was also studied to improve the pullulan yield. After screening the suitable supplement, effect of supplement concentration on pullulan production was investigated. The pullulan from cassava bagasse was characterized by FTIR, 1H-NMR and 13C-NMR. Molecular weight of pullulan from cassava bagasse was determined by gel permeation chromatography. Thus, cassava bagasse emerged to be a cheap and novel substrate for pullulan production.</description><subject>Agriculture, rearing and food industries wastes</subject><subject>Applied sciences</subject><subject>Aureobasidium pullulans</subject><subject>Bioconversions. Hemisynthesis</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Carbon - metabolism</subject><subject>Cassava bagasse</subject><subject>Cellulose - chemistry</subject><subject>Chromatography, Gel</subject><subject>Culture Media - chemistry</subject><subject>Disaccharides - metabolism</subject><subject>Exact sciences and technology</subject><subject>Fermentation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gel permeation chromatography</subject><subject>Glucans - biosynthesis</subject><subject>Hydrogen-Ion Concentration</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Manihot - chemistry</subject><subject>Manihot esculenta</subject><subject>Methods. Procedures. Technologies</subject><subject>Monosaccharides - metabolism</subject><subject>Morphology of cells</subject><subject>Natural polymers</subject><subject>Nitrogen - metabolism</subject><subject>Physicochemistry of polymers</subject><subject>Pollution</subject><subject>Pullulan</subject><subject>Saccharomycetales - metabolism</subject><subject>Solid Waste</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Starch and polysaccharides</subject><subject>Wastes</subject><issn>0144-8617</issn><issn>1879-1344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkc3O1CAYhYnR-I2jl6DpxsRNK38FujI68S_5Eje6JpS-NUxoGXnbMe68CK_QK5HJVF1-bHgTnnM4cAh5ymjDKFMvj413uT-l2HDKRENNQ0V3j-yY0V3NhJT3yY4yKWujmL4hjxCPtCzF6ENywyXXUup2R6Y3Ifk0nyFjSHOVxirMw4pLDi5WmGIYqu8OF_j989fBIbqzq3r3tUxQjSlXpzXGNbq5OuU0rH65eIR5E-LiloJBnmAuYzl7TB6MLiI82fY9-fLu7efDh_r20_uPh9e3tZfcLDVQz3irOgDwXCg9SDPI1kgHxrS904UShna8PFWC5lQpR43RRrVajZ3sxZ68uPqWWN9WwMVOAT3EkhTSipa1XBYPysXdqFScGWEKviftFfU5IWYY7SmHyeUfllF7KcUe7VaKvZRiqbGllKJ7tl2x9hMM_1R_WyjA8w1w6F0cs5t9wP-coaLUKgv36spB-btzgGzRB5g9DCGDX-yQwh1R_gAkEq6u</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Sugumaran, K.R.</creator><creator>Jothi, P.</creator><creator>Ponnusami, V.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>2014</creationdate><title>Bioconversion of industrial solid waste—Cassava bagasse for pullulan production in solid state fermentation</title><author>Sugumaran, K.R. ; Jothi, P. ; Ponnusami, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-e0c12569eeec2367d48d4584ae885ba7c42380928794e72066a088786576f94b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Agriculture, rearing and food industries wastes</topic><topic>Applied sciences</topic><topic>Aureobasidium pullulans</topic><topic>Bioconversions. Hemisynthesis</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Carbon - metabolism</topic><topic>Cassava bagasse</topic><topic>Cellulose - chemistry</topic><topic>Chromatography, Gel</topic><topic>Culture Media - chemistry</topic><topic>Disaccharides - metabolism</topic><topic>Exact sciences and technology</topic><topic>Fermentation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gel permeation chromatography</topic><topic>Glucans - biosynthesis</topic><topic>Hydrogen-Ion Concentration</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Manihot - chemistry</topic><topic>Manihot esculenta</topic><topic>Methods. Procedures. Technologies</topic><topic>Monosaccharides - metabolism</topic><topic>Morphology of cells</topic><topic>Natural polymers</topic><topic>Nitrogen - metabolism</topic><topic>Physicochemistry of polymers</topic><topic>Pollution</topic><topic>Pullulan</topic><topic>Saccharomycetales - metabolism</topic><topic>Solid Waste</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Starch and polysaccharides</topic><topic>Wastes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sugumaran, K.R.</creatorcontrib><creatorcontrib>Jothi, P.</creatorcontrib><creatorcontrib>Ponnusami, V.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Carbohydrate polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sugumaran, K.R.</au><au>Jothi, P.</au><au>Ponnusami, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioconversion of industrial solid waste—Cassava bagasse for pullulan production in solid state fermentation</atitle><jtitle>Carbohydrate polymers</jtitle><addtitle>Carbohydr Polym</addtitle><date>2014</date><risdate>2014</risdate><volume>99</volume><spage>22</spage><epage>30</epage><pages>22-30</pages><issn>0144-8617</issn><eissn>1879-1344</eissn><coden>CAPOD8</coden><abstract>•Pullulan produced by bioconversion of an industrial waste, cassava bagasse.•Initial pH influence cell morphology and hence pullulan yield.•FTIR, 1H-NMR and 13C-NMR confirm product.•Addition of supplementary carbon source, mannose improved yield.•Average molecular weight of pullulan produced was 9.8×106g/mol. The purpose of the work was to produce commercially important pullulan using industrial solid waste namely cassava bagasse in solid state fermentation and minimize the solid waste disposal problem. First, influence of initial pH on cell morphology and pullulan yield was studied. Effect of various factors like fermentation time, moisture ratio, nitrogen sources and particle size on pullulan yield was investigated. Various supplementary carbon sources (3%, w/w) namely glucose, sucrose, fructose, maltose, mannose and xylose with cassava bagasse was also studied to improve the pullulan yield. After screening the suitable supplement, effect of supplement concentration on pullulan production was investigated. The pullulan from cassava bagasse was characterized by FTIR, 1H-NMR and 13C-NMR. Molecular weight of pullulan from cassava bagasse was determined by gel permeation chromatography. Thus, cassava bagasse emerged to be a cheap and novel substrate for pullulan production.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>24274475</pmid><doi>10.1016/j.carbpol.2013.08.039</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0144-8617
ispartof Carbohydrate polymers, 2014, Vol.99, p.22-30
issn 0144-8617
1879-1344
language eng
recordid cdi_proquest_miscellaneous_1524423023
source ScienceDirect Freedom Collection 2022-2024
subjects Agriculture, rearing and food industries wastes
Applied sciences
Aureobasidium pullulans
Bioconversions. Hemisynthesis
Biological and medical sciences
Biotechnology
Carbon - metabolism
Cassava bagasse
Cellulose - chemistry
Chromatography, Gel
Culture Media - chemistry
Disaccharides - metabolism
Exact sciences and technology
Fermentation
Fundamental and applied biological sciences. Psychology
Gel permeation chromatography
Glucans - biosynthesis
Hydrogen-Ion Concentration
Magnetic Resonance Spectroscopy
Manihot - chemistry
Manihot esculenta
Methods. Procedures. Technologies
Monosaccharides - metabolism
Morphology of cells
Natural polymers
Nitrogen - metabolism
Physicochemistry of polymers
Pollution
Pullulan
Saccharomycetales - metabolism
Solid Waste
Spectroscopy, Fourier Transform Infrared
Starch and polysaccharides
Wastes
title Bioconversion of industrial solid waste—Cassava bagasse for pullulan production in solid state fermentation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A18%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioconversion%20of%20industrial%20solid%20waste%E2%80%94Cassava%20bagasse%20for%20pullulan%20production%20in%20solid%20state%20fermentation&rft.jtitle=Carbohydrate%20polymers&rft.au=Sugumaran,%20K.R.&rft.date=2014&rft.volume=99&rft.spage=22&rft.epage=30&rft.pages=22-30&rft.issn=0144-8617&rft.eissn=1879-1344&rft.coden=CAPOD8&rft_id=info:doi/10.1016/j.carbpol.2013.08.039&rft_dat=%3Cproquest_cross%3E1462183842%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c428t-e0c12569eeec2367d48d4584ae885ba7c42380928794e72066a088786576f94b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1462183842&rft_id=info:pmid/24274475&rfr_iscdi=true