Loading…
Bioconversion of industrial solid waste—Cassava bagasse for pullulan production in solid state fermentation
•Pullulan produced by bioconversion of an industrial waste, cassava bagasse.•Initial pH influence cell morphology and hence pullulan yield.•FTIR, 1H-NMR and 13C-NMR confirm product.•Addition of supplementary carbon source, mannose improved yield.•Average molecular weight of pullulan produced was 9.8...
Saved in:
Published in: | Carbohydrate polymers 2014, Vol.99, p.22-30 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c428t-e0c12569eeec2367d48d4584ae885ba7c42380928794e72066a088786576f94b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c428t-e0c12569eeec2367d48d4584ae885ba7c42380928794e72066a088786576f94b3 |
container_end_page | 30 |
container_issue | |
container_start_page | 22 |
container_title | Carbohydrate polymers |
container_volume | 99 |
creator | Sugumaran, K.R. Jothi, P. Ponnusami, V. |
description | •Pullulan produced by bioconversion of an industrial waste, cassava bagasse.•Initial pH influence cell morphology and hence pullulan yield.•FTIR, 1H-NMR and 13C-NMR confirm product.•Addition of supplementary carbon source, mannose improved yield.•Average molecular weight of pullulan produced was 9.8×106g/mol.
The purpose of the work was to produce commercially important pullulan using industrial solid waste namely cassava bagasse in solid state fermentation and minimize the solid waste disposal problem. First, influence of initial pH on cell morphology and pullulan yield was studied. Effect of various factors like fermentation time, moisture ratio, nitrogen sources and particle size on pullulan yield was investigated. Various supplementary carbon sources (3%, w/w) namely glucose, sucrose, fructose, maltose, mannose and xylose with cassava bagasse was also studied to improve the pullulan yield. After screening the suitable supplement, effect of supplement concentration on pullulan production was investigated. The pullulan from cassava bagasse was characterized by FTIR, 1H-NMR and 13C-NMR. Molecular weight of pullulan from cassava bagasse was determined by gel permeation chromatography. Thus, cassava bagasse emerged to be a cheap and novel substrate for pullulan production. |
doi_str_mv | 10.1016/j.carbpol.2013.08.039 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1524423023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0144861713008230</els_id><sourcerecordid>1462183842</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-e0c12569eeec2367d48d4584ae885ba7c42380928794e72066a088786576f94b3</originalsourceid><addsrcrecordid>eNqFkc3O1CAYhYnR-I2jl6DpxsRNK38FujI68S_5Eje6JpS-NUxoGXnbMe68CK_QK5HJVF1-bHgTnnM4cAh5ymjDKFMvj413uT-l2HDKRENNQ0V3j-yY0V3NhJT3yY4yKWujmL4hjxCPtCzF6ENywyXXUup2R6Y3Ifk0nyFjSHOVxirMw4pLDi5WmGIYqu8OF_j989fBIbqzq3r3tUxQjSlXpzXGNbq5OuU0rH65eIR5E-LiloJBnmAuYzl7TB6MLiI82fY9-fLu7efDh_r20_uPh9e3tZfcLDVQz3irOgDwXCg9SDPI1kgHxrS904UShna8PFWC5lQpR43RRrVajZ3sxZ68uPqWWN9WwMVOAT3EkhTSipa1XBYPysXdqFScGWEKviftFfU5IWYY7SmHyeUfllF7KcUe7VaKvZRiqbGllKJ7tl2x9hMM_1R_WyjA8w1w6F0cs5t9wP-coaLUKgv36spB-btzgGzRB5g9DCGDX-yQwh1R_gAkEq6u</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1462183842</pqid></control><display><type>article</type><title>Bioconversion of industrial solid waste—Cassava bagasse for pullulan production in solid state fermentation</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Sugumaran, K.R. ; Jothi, P. ; Ponnusami, V.</creator><creatorcontrib>Sugumaran, K.R. ; Jothi, P. ; Ponnusami, V.</creatorcontrib><description>•Pullulan produced by bioconversion of an industrial waste, cassava bagasse.•Initial pH influence cell morphology and hence pullulan yield.•FTIR, 1H-NMR and 13C-NMR confirm product.•Addition of supplementary carbon source, mannose improved yield.•Average molecular weight of pullulan produced was 9.8×106g/mol.
The purpose of the work was to produce commercially important pullulan using industrial solid waste namely cassava bagasse in solid state fermentation and minimize the solid waste disposal problem. First, influence of initial pH on cell morphology and pullulan yield was studied. Effect of various factors like fermentation time, moisture ratio, nitrogen sources and particle size on pullulan yield was investigated. Various supplementary carbon sources (3%, w/w) namely glucose, sucrose, fructose, maltose, mannose and xylose with cassava bagasse was also studied to improve the pullulan yield. After screening the suitable supplement, effect of supplement concentration on pullulan production was investigated. The pullulan from cassava bagasse was characterized by FTIR, 1H-NMR and 13C-NMR. Molecular weight of pullulan from cassava bagasse was determined by gel permeation chromatography. Thus, cassava bagasse emerged to be a cheap and novel substrate for pullulan production.</description><identifier>ISSN: 0144-8617</identifier><identifier>EISSN: 1879-1344</identifier><identifier>DOI: 10.1016/j.carbpol.2013.08.039</identifier><identifier>PMID: 24274475</identifier><identifier>CODEN: CAPOD8</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Agriculture, rearing and food industries wastes ; Applied sciences ; Aureobasidium pullulans ; Bioconversions. Hemisynthesis ; Biological and medical sciences ; Biotechnology ; Carbon - metabolism ; Cassava bagasse ; Cellulose - chemistry ; Chromatography, Gel ; Culture Media - chemistry ; Disaccharides - metabolism ; Exact sciences and technology ; Fermentation ; Fundamental and applied biological sciences. Psychology ; Gel permeation chromatography ; Glucans - biosynthesis ; Hydrogen-Ion Concentration ; Magnetic Resonance Spectroscopy ; Manihot - chemistry ; Manihot esculenta ; Methods. Procedures. Technologies ; Monosaccharides - metabolism ; Morphology of cells ; Natural polymers ; Nitrogen - metabolism ; Physicochemistry of polymers ; Pollution ; Pullulan ; Saccharomycetales - metabolism ; Solid Waste ; Spectroscopy, Fourier Transform Infrared ; Starch and polysaccharides ; Wastes</subject><ispartof>Carbohydrate polymers, 2014, Vol.99, p.22-30</ispartof><rights>2013 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-e0c12569eeec2367d48d4584ae885ba7c42380928794e72066a088786576f94b3</citedby><cites>FETCH-LOGICAL-c428t-e0c12569eeec2367d48d4584ae885ba7c42380928794e72066a088786576f94b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,4010,27904,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28031874$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24274475$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sugumaran, K.R.</creatorcontrib><creatorcontrib>Jothi, P.</creatorcontrib><creatorcontrib>Ponnusami, V.</creatorcontrib><title>Bioconversion of industrial solid waste—Cassava bagasse for pullulan production in solid state fermentation</title><title>Carbohydrate polymers</title><addtitle>Carbohydr Polym</addtitle><description>•Pullulan produced by bioconversion of an industrial waste, cassava bagasse.•Initial pH influence cell morphology and hence pullulan yield.•FTIR, 1H-NMR and 13C-NMR confirm product.•Addition of supplementary carbon source, mannose improved yield.•Average molecular weight of pullulan produced was 9.8×106g/mol.
The purpose of the work was to produce commercially important pullulan using industrial solid waste namely cassava bagasse in solid state fermentation and minimize the solid waste disposal problem. First, influence of initial pH on cell morphology and pullulan yield was studied. Effect of various factors like fermentation time, moisture ratio, nitrogen sources and particle size on pullulan yield was investigated. Various supplementary carbon sources (3%, w/w) namely glucose, sucrose, fructose, maltose, mannose and xylose with cassava bagasse was also studied to improve the pullulan yield. After screening the suitable supplement, effect of supplement concentration on pullulan production was investigated. The pullulan from cassava bagasse was characterized by FTIR, 1H-NMR and 13C-NMR. Molecular weight of pullulan from cassava bagasse was determined by gel permeation chromatography. Thus, cassava bagasse emerged to be a cheap and novel substrate for pullulan production.</description><subject>Agriculture, rearing and food industries wastes</subject><subject>Applied sciences</subject><subject>Aureobasidium pullulans</subject><subject>Bioconversions. Hemisynthesis</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Carbon - metabolism</subject><subject>Cassava bagasse</subject><subject>Cellulose - chemistry</subject><subject>Chromatography, Gel</subject><subject>Culture Media - chemistry</subject><subject>Disaccharides - metabolism</subject><subject>Exact sciences and technology</subject><subject>Fermentation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gel permeation chromatography</subject><subject>Glucans - biosynthesis</subject><subject>Hydrogen-Ion Concentration</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Manihot - chemistry</subject><subject>Manihot esculenta</subject><subject>Methods. Procedures. Technologies</subject><subject>Monosaccharides - metabolism</subject><subject>Morphology of cells</subject><subject>Natural polymers</subject><subject>Nitrogen - metabolism</subject><subject>Physicochemistry of polymers</subject><subject>Pollution</subject><subject>Pullulan</subject><subject>Saccharomycetales - metabolism</subject><subject>Solid Waste</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Starch and polysaccharides</subject><subject>Wastes</subject><issn>0144-8617</issn><issn>1879-1344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkc3O1CAYhYnR-I2jl6DpxsRNK38FujI68S_5Eje6JpS-NUxoGXnbMe68CK_QK5HJVF1-bHgTnnM4cAh5ymjDKFMvj413uT-l2HDKRENNQ0V3j-yY0V3NhJT3yY4yKWujmL4hjxCPtCzF6ENywyXXUup2R6Y3Ifk0nyFjSHOVxirMw4pLDi5WmGIYqu8OF_j989fBIbqzq3r3tUxQjSlXpzXGNbq5OuU0rH65eIR5E-LiloJBnmAuYzl7TB6MLiI82fY9-fLu7efDh_r20_uPh9e3tZfcLDVQz3irOgDwXCg9SDPI1kgHxrS904UShna8PFWC5lQpR43RRrVajZ3sxZ68uPqWWN9WwMVOAT3EkhTSipa1XBYPysXdqFScGWEKviftFfU5IWYY7SmHyeUfllF7KcUe7VaKvZRiqbGllKJ7tl2x9hMM_1R_WyjA8w1w6F0cs5t9wP-coaLUKgv36spB-btzgGzRB5g9DCGDX-yQwh1R_gAkEq6u</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Sugumaran, K.R.</creator><creator>Jothi, P.</creator><creator>Ponnusami, V.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>2014</creationdate><title>Bioconversion of industrial solid waste—Cassava bagasse for pullulan production in solid state fermentation</title><author>Sugumaran, K.R. ; Jothi, P. ; Ponnusami, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-e0c12569eeec2367d48d4584ae885ba7c42380928794e72066a088786576f94b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Agriculture, rearing and food industries wastes</topic><topic>Applied sciences</topic><topic>Aureobasidium pullulans</topic><topic>Bioconversions. Hemisynthesis</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Carbon - metabolism</topic><topic>Cassava bagasse</topic><topic>Cellulose - chemistry</topic><topic>Chromatography, Gel</topic><topic>Culture Media - chemistry</topic><topic>Disaccharides - metabolism</topic><topic>Exact sciences and technology</topic><topic>Fermentation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gel permeation chromatography</topic><topic>Glucans - biosynthesis</topic><topic>Hydrogen-Ion Concentration</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Manihot - chemistry</topic><topic>Manihot esculenta</topic><topic>Methods. Procedures. Technologies</topic><topic>Monosaccharides - metabolism</topic><topic>Morphology of cells</topic><topic>Natural polymers</topic><topic>Nitrogen - metabolism</topic><topic>Physicochemistry of polymers</topic><topic>Pollution</topic><topic>Pullulan</topic><topic>Saccharomycetales - metabolism</topic><topic>Solid Waste</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Starch and polysaccharides</topic><topic>Wastes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sugumaran, K.R.</creatorcontrib><creatorcontrib>Jothi, P.</creatorcontrib><creatorcontrib>Ponnusami, V.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Carbohydrate polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sugumaran, K.R.</au><au>Jothi, P.</au><au>Ponnusami, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bioconversion of industrial solid waste—Cassava bagasse for pullulan production in solid state fermentation</atitle><jtitle>Carbohydrate polymers</jtitle><addtitle>Carbohydr Polym</addtitle><date>2014</date><risdate>2014</risdate><volume>99</volume><spage>22</spage><epage>30</epage><pages>22-30</pages><issn>0144-8617</issn><eissn>1879-1344</eissn><coden>CAPOD8</coden><abstract>•Pullulan produced by bioconversion of an industrial waste, cassava bagasse.•Initial pH influence cell morphology and hence pullulan yield.•FTIR, 1H-NMR and 13C-NMR confirm product.•Addition of supplementary carbon source, mannose improved yield.•Average molecular weight of pullulan produced was 9.8×106g/mol.
The purpose of the work was to produce commercially important pullulan using industrial solid waste namely cassava bagasse in solid state fermentation and minimize the solid waste disposal problem. First, influence of initial pH on cell morphology and pullulan yield was studied. Effect of various factors like fermentation time, moisture ratio, nitrogen sources and particle size on pullulan yield was investigated. Various supplementary carbon sources (3%, w/w) namely glucose, sucrose, fructose, maltose, mannose and xylose with cassava bagasse was also studied to improve the pullulan yield. After screening the suitable supplement, effect of supplement concentration on pullulan production was investigated. The pullulan from cassava bagasse was characterized by FTIR, 1H-NMR and 13C-NMR. Molecular weight of pullulan from cassava bagasse was determined by gel permeation chromatography. Thus, cassava bagasse emerged to be a cheap and novel substrate for pullulan production.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>24274475</pmid><doi>10.1016/j.carbpol.2013.08.039</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0144-8617 |
ispartof | Carbohydrate polymers, 2014, Vol.99, p.22-30 |
issn | 0144-8617 1879-1344 |
language | eng |
recordid | cdi_proquest_miscellaneous_1524423023 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Agriculture, rearing and food industries wastes Applied sciences Aureobasidium pullulans Bioconversions. Hemisynthesis Biological and medical sciences Biotechnology Carbon - metabolism Cassava bagasse Cellulose - chemistry Chromatography, Gel Culture Media - chemistry Disaccharides - metabolism Exact sciences and technology Fermentation Fundamental and applied biological sciences. Psychology Gel permeation chromatography Glucans - biosynthesis Hydrogen-Ion Concentration Magnetic Resonance Spectroscopy Manihot - chemistry Manihot esculenta Methods. Procedures. Technologies Monosaccharides - metabolism Morphology of cells Natural polymers Nitrogen - metabolism Physicochemistry of polymers Pollution Pullulan Saccharomycetales - metabolism Solid Waste Spectroscopy, Fourier Transform Infrared Starch and polysaccharides Wastes |
title | Bioconversion of industrial solid waste—Cassava bagasse for pullulan production in solid state fermentation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A18%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bioconversion%20of%20industrial%20solid%20waste%E2%80%94Cassava%20bagasse%20for%20pullulan%20production%20in%20solid%20state%20fermentation&rft.jtitle=Carbohydrate%20polymers&rft.au=Sugumaran,%20K.R.&rft.date=2014&rft.volume=99&rft.spage=22&rft.epage=30&rft.pages=22-30&rft.issn=0144-8617&rft.eissn=1879-1344&rft.coden=CAPOD8&rft_id=info:doi/10.1016/j.carbpol.2013.08.039&rft_dat=%3Cproquest_cross%3E1462183842%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c428t-e0c12569eeec2367d48d4584ae885ba7c42380928794e72066a088786576f94b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1462183842&rft_id=info:pmid/24274475&rfr_iscdi=true |