Loading…
Antifreeze (Glyco)protein Mimetic Behavior of Poly(vinyl alcohol): Detailed Structure Ice Recrystallization Inhibition Activity Study
This manuscript reports a detailed study on the ability of poly(vinyl alcohol) to act as a biomimetic surrogate for antifreeze(glyco)proteins, with a focus on the specific property of ice-recrystallization inhibition (IRI). Despite over 40 years of study, the underlying mechanisms that govern the ac...
Saved in:
Published in: | Biomacromolecules 2013-05, Vol.14 (5), p.1578-1586 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This manuscript reports a detailed study on the ability of poly(vinyl alcohol) to act as a biomimetic surrogate for antifreeze(glyco)proteins, with a focus on the specific property of ice-recrystallization inhibition (IRI). Despite over 40 years of study, the underlying mechanisms that govern the action of biological antifreezes are still poorly understood, which is in part due to their limited availability and challenging synthesis. Poly(vinyl alcohol) (PVA) has been shown to display remarkable ice recrystallization inhibition activity despite its major structural differences to native antifreeze proteins. Here, controlled radical polymerization is used to synthesize well-defined PVA, which has enabled us to obtain the first quantitative structure–activity relationships, to probe the role of molecular weight and comonomers on IRI activity. Crucially, it was found that IRI activity is “switched on” when the polymer chain length increases from 10 and 20 repeat units. Substitution of the polymer side chains with hydrophilic or hydrophobic units was found to diminish activity. Hydrophobic modifications to the backbone were slightly more tolerated than side chain modifications, which implies an unbroken sequence of hydroxyl units is necessary for activity. These results highlight that, although hydrophobic domains are key components of IRI activity, the random inclusion of addition hydrophobic units does not guarantee an increase in activity and that the actual polymer conformation is important. |
---|---|
ISSN: | 1525-7797 1526-4602 |
DOI: | 10.1021/bm400217j |