Loading…
A finite element simulation of initial movement, orthodontic movement, and the centre of resistance of the maxillary teeth connected with an archwire
The purpose of this article is to simulate long-term movement of maxillary teeth connected with an archwire and to clarify the difference between the initial tooth movement and the long-term orthodontic movement. Initial tooth movement was calculated based on the elastic deformation of the periodont...
Saved in:
Published in: | European journal of orthodontics 2014-06, Vol.36 (3), p.255-261 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The purpose of this article is to simulate long-term movement of maxillary teeth connected with an archwire and to clarify the difference between the initial tooth movement and the long-term orthodontic movement. Initial tooth movement was calculated based on the elastic deformation of the periodontal ligament. Orthodontic tooth movement was simulated based on the bone remodeling law of the alveolar bone, while consequentially updating the force system. In the initial tooth movement, all teeth tipped individually due to an elastic deflection of the archwire. In the long-term movement, the maxillary teeth moved as one united body, as if the archwire were a rigid material. Difference of both movement patterns was due to the change in force system during tooth movement. The long-term movement could not be predicted from the initial tooth movement. Movement pattern and location of the centre of resistance in the long-term movement were almost the same as those in the initial tooth movement as calculated by assuming the archwire to be a rigid material. |
---|---|
ISSN: | 0141-5387 1460-2210 |
DOI: | 10.1093/ejo/cjr123 |