Loading…
Perforin- and granulysin-mediated cytotoxicity and interleukin 15 play roles in neurocognitive impairment in patients with acute lymphoblastic leukaemia
Abstract Acute lymphoblastic leukaemia (ALL) is an aggressive disease. The course of disease is regulated by pro-inflammatory agents, and malignant cell infiltration of tissues plays a deleterious role in disease progression, greatly impacting quality of life, especially in the cognitive domains. Ou...
Saved in:
Published in: | Medical hypotheses 2014-07, Vol.83 (1), p.122-126 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Acute lymphoblastic leukaemia (ALL) is an aggressive disease. The course of disease is regulated by pro-inflammatory agents, and malignant cell infiltration of tissues plays a deleterious role in disease progression, greatly impacting quality of life, especially in the cognitive domains. Our hypothesis is that significant serum concentrations of interleukin 15 (IL-15) are responsible for higher expression of adhesion molecules on endothelial cells of blood–brain barrier (BBB) which allow leukaemia cells and/or normal lymphocytes the infiltration into the brain. In brain tissue these cells could be stimulated to release perforin and granulysin causing induction of apoptosis in brain cells that are involved in complex neural signalling mediated by neurotransmitters, and consequent fine cognitive impairment. Such changes could be detected early, even before notable clinical psycho-neurological or radiological changes in patients with ALL. To evaluate this hypothesis we propose measuring cognitive function using Complex Reactiometer Drenovac (CRD) scores in patients with ALL. The expression of different adhesion molecules on BBB as well as presence and distribution of different lymphocytes in brain tissue will be analyzed. We will then correlate CRD scores with levels of IL-15 and the percentages of T cells, natural killer T cells, and natural killer cells expressing perforin and/or granulysin proteins. CRD is a scientifically recognised and highly sensitive psychometric laboratory test based on the complex chronometric mathematical measuring of speed of reaction to various stimuli. It provides an objective assessment of cognitive functions from the most complex mental activities to the simplest reaction reflexes. Early recognition of cognitive dysfunction might be important when selecting the most appropriate chemotherapy and/or radiotherapy regimens, and could allow for the implementation of preventive measures against further deterioration in cognitive function and quality of life in patients with ALL. |
---|---|
ISSN: | 0306-9877 1532-2777 |
DOI: | 10.1016/j.mehy.2014.03.024 |