Loading…

Short communication: Effects of molasses products on productivity and milk fatty acid profile of cows fed diets high in dried distillers grains with solubles

Previous research has shown that replacing up to 5% [of dietary dry matter (DM)] corn with cane molasses can partially alleviate milk fat depression when cows are fed high-concentrate, low-fiber rations containing dried distillers grains with solubles. The primary objective of this study was to dete...

Full description

Saved in:
Bibliographic Details
Published in:Journal of dairy science 2014, Vol.97 (6), p.3860-3865
Main Authors: Siverson, A, Vargas-Rodriguez, C F, Bradford, B J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Previous research has shown that replacing up to 5% [of dietary dry matter (DM)] corn with cane molasses can partially alleviate milk fat depression when cows are fed high-concentrate, low-fiber rations containing dried distillers grains with solubles. The primary objective of this study was to determine whether dietary molasses alters milk fatty acid (FA) profile or improves solids-corrected milk yield in the context of a more typical lactation diet. A secondary objective was to assess production responses to increasing rumen-degradable protein supply when molasses was fed. Twelve primiparous and 28 multiparous Holstein cows (196 ± 39 d in milk) were blocked by parity and assigned to 4 pens. Pens were randomly allocated to treatment sequence in a 4 × 4 Latin square design, balanced for carryover effects. Treatment periods were 21 d, with 17 d for diet adaptation and 4 d for sample and data collection. Treatments were a control diet, providing 20% dried distillers grains with solubles (DM basis), 35% neutral detergent fiber, 30% starch, and 5% ether extract; a diet with 4.4% cane molasses replacing a portion of the corn grain; a diet with 2.9% molasses supplement containing 32% crude protein on a DM basis; and a diet with 5.8% (DM basis) molasses supplement. Animal-level data were analyzed using mixed models, including the fixed effect of treatment and the random effects of period, pen, period × pen interaction, and cow within pen to recognize pen as the experimental unit. Diets did not alter DM intake, milk production, milk component concentration or yield, feed efficiency (DM intake/milk yield), body weight change, or milk somatic cell count. Milk stearic acid content was increased by the diet containing 5.8% molasses supplement compared with the control diet and the diet containing 2.9% molasses supplement, but the magnitude of the effect was small (12.27, 11.75, and 11.69 ± 0.29 g/100g of FA). Production data revealed a dramatic effect of period on milk fat content and yield. Milk fat content decreased during the course of the experiment (least squares means = 3.16, 2.81, 2.93, and 2.64 ± 0.09% for periods 1 to 4, respectively), as did milk fat yield (1.20, 1.03, 0.98, and 0.79 ± 0.05 kg/d). Exchanging molasses-based products for corn at 2.9 to 5.8% of dietary DM did not influence productivity and had minute effects on milk FA profile. The limited responses in this study may have been influenced by dietary unsaturated FA content or the advancing stage
ISSN:0022-0302
1525-3198
DOI:10.3168/jds.2014-7902