Loading…
Biomechanical analysis of the upper thoracic spine after decompressive procedures
Abstract Background context Decompressive procedures such as laminectomy, facetectomy, and costotransversectomy are routinely performed for various pathologies in the thoracic spine. The thoracic spine is unique, in part, because of the sternocostovertebral articulations that provide additional stre...
Saved in:
Published in: | The spine journal 2014-06, Vol.14 (6), p.1010-1016 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c417t-ed8a0778323e92cbe63e62a0b1fd960372a563b2296cc9f653cb00dfebb637de3 |
---|---|
cites | cdi_FETCH-LOGICAL-c417t-ed8a0778323e92cbe63e62a0b1fd960372a563b2296cc9f653cb00dfebb637de3 |
container_end_page | 1016 |
container_issue | 6 |
container_start_page | 1010 |
container_title | The spine journal |
container_volume | 14 |
creator | Healy, Andrew T., MD Lubelski, Daniel, BA Mageswaran, Prasath, PhD Bhowmick, Deb A., MD Bartsch, Adam J., PhD, PE Benzel, Edward C., MD Mroz, Thomas E., MD |
description | Abstract Background context Decompressive procedures such as laminectomy, facetectomy, and costotransversectomy are routinely performed for various pathologies in the thoracic spine. The thoracic spine is unique, in part, because of the sternocostovertebral articulations that provide additional strength to the region relative to the cervical and lumbar spines. During decompressive surgeries, stability is compromised at a presently unknown point. Purpose To evaluate thoracic spinal stability after common surgical decompressive procedures in thoracic spines with intact sternocostovertebral articulations. Study design Biomechanical cadaveric study. Methods Fresh-frozen human cadaveric spine specimens with intact rib cages, C7–L1 (n=9), were used. An industrial robot tested all spines in axial rotation (AR), lateral bending (LB), and flexion-extension (FE) by applying pure moments (±5 Nm). The specimens were first tested in their intact state and then tested after each of the following sequential surgical decompressive procedures at T4–T5 consisting of laminectomy; unilateral facetectomy; unilateral costotransversectomy, and subsequently instrumented fusion from T3–T7. Results We found that in all three planes of motion, the sequential decompressive procedures caused no statistically significant change in motion between T3–T7 or T1–T12 when compared with intact. In comparing between intact and instrumented specimens, our study found that instrumentation reduced global range of motion (ROM) between T1–T12 by 16.3% (p=.001), 12% (p=.002), and 18.4% (p=.0004) for AR, FE, and LB, respectively. Age showed a negative correlation with motion in FE (r=−0.78, p=.01) and AR (r=−0.7, p=.04). Conclusions Thoracic spine stability was not significantly affected by sequential decompressive procedures in thoracic segments at the level of the true ribs in all three planes of motion in intact thoracic specimens. Age appeared to negatively correlate with ROM of the specimen. Our study suggests that thoracic spinal stability is maintained immediately after unilateral decompression at the level of the true ribs. These preliminary observations, however, do not depict the long-term sequelae of such procedures and warrant further investigation. |
doi_str_mv | 10.1016/j.spinee.2013.11.035 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1528340253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S152994301301930X</els_id><sourcerecordid>1528340253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-ed8a0778323e92cbe63e62a0b1fd960372a563b2296cc9f653cb00dfebb637de3</originalsourceid><addsrcrecordid>eNqFkU9r3DAQxUVp6OZPv0EJPvZiZ0ayZftSaJc2CQRCSAu5CVkes9rYlivZgf320WbTHnIJCDQSb-Yxv8fYF4QMAeXFNguTHYkyDigyxAxE8YEdY1VWKUrBP8a64HVa5wJW7CSELQBUJfJPbMVzXmMJeMzuflg3kNno0RrdJ3rU_S7YkLgumTeULNNEPlbOa2NN8uKY6G6Ony0ZN0yeQrBPlEzeGWqX-DxjR53uA31-vU_Zn18_f6-v0pvby-v195vU5FjOKbWVhrKsBBdUc9OQFCS5hga7tpYgSq4LKRrOa2lM3clCmAag7ahppChbEqfs62FutP67UJjVYIOhvtcjuSWouHwlcuCFiNL8IDXeheCpU5O3g_Y7haD2MNVWHWCqPUyFqCLM2Hb-6rA0A7X_m_7Ri4JvBwHFPZ8seRWMpTGCsJ7MrFpn33N4O8D09iWJR9pR2LrFx0DiLipwBep-H-g-T4ynFvAgngGNkp1s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1528340253</pqid></control><display><type>article</type><title>Biomechanical analysis of the upper thoracic spine after decompressive procedures</title><source>ScienceDirect Journals</source><creator>Healy, Andrew T., MD ; Lubelski, Daniel, BA ; Mageswaran, Prasath, PhD ; Bhowmick, Deb A., MD ; Bartsch, Adam J., PhD, PE ; Benzel, Edward C., MD ; Mroz, Thomas E., MD</creator><creatorcontrib>Healy, Andrew T., MD ; Lubelski, Daniel, BA ; Mageswaran, Prasath, PhD ; Bhowmick, Deb A., MD ; Bartsch, Adam J., PhD, PE ; Benzel, Edward C., MD ; Mroz, Thomas E., MD</creatorcontrib><description>Abstract Background context Decompressive procedures such as laminectomy, facetectomy, and costotransversectomy are routinely performed for various pathologies in the thoracic spine. The thoracic spine is unique, in part, because of the sternocostovertebral articulations that provide additional strength to the region relative to the cervical and lumbar spines. During decompressive surgeries, stability is compromised at a presently unknown point. Purpose To evaluate thoracic spinal stability after common surgical decompressive procedures in thoracic spines with intact sternocostovertebral articulations. Study design Biomechanical cadaveric study. Methods Fresh-frozen human cadaveric spine specimens with intact rib cages, C7–L1 (n=9), were used. An industrial robot tested all spines in axial rotation (AR), lateral bending (LB), and flexion-extension (FE) by applying pure moments (±5 Nm). The specimens were first tested in their intact state and then tested after each of the following sequential surgical decompressive procedures at T4–T5 consisting of laminectomy; unilateral facetectomy; unilateral costotransversectomy, and subsequently instrumented fusion from T3–T7. Results We found that in all three planes of motion, the sequential decompressive procedures caused no statistically significant change in motion between T3–T7 or T1–T12 when compared with intact. In comparing between intact and instrumented specimens, our study found that instrumentation reduced global range of motion (ROM) between T1–T12 by 16.3% (p=.001), 12% (p=.002), and 18.4% (p=.0004) for AR, FE, and LB, respectively. Age showed a negative correlation with motion in FE (r=−0.78, p=.01) and AR (r=−0.7, p=.04). Conclusions Thoracic spine stability was not significantly affected by sequential decompressive procedures in thoracic segments at the level of the true ribs in all three planes of motion in intact thoracic specimens. Age appeared to negatively correlate with ROM of the specimen. Our study suggests that thoracic spinal stability is maintained immediately after unilateral decompression at the level of the true ribs. These preliminary observations, however, do not depict the long-term sequelae of such procedures and warrant further investigation.</description><identifier>ISSN: 1529-9430</identifier><identifier>EISSN: 1878-1632</identifier><identifier>DOI: 10.1016/j.spinee.2013.11.035</identifier><identifier>PMID: 24291701</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Aged ; Biomechanical Phenomena - physiology ; Biomechanics ; Cadaver ; Costotransversectomy ; Decompression ; Decompression, Surgical ; Female ; Humans ; Male ; Middle Aged ; Orthopedics ; Posture - physiology ; Range of Motion, Articular - physiology ; Rotation ; Spinal Fusion ; Spine ; Thoracic ; Thoracic Vertebrae - physiology ; Thoracic Vertebrae - surgery</subject><ispartof>The spine journal, 2014-06, Vol.14 (6), p.1010-1016</ispartof><rights>Elsevier Inc.</rights><rights>2014 Elsevier Inc.</rights><rights>Copyright © 2014 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-ed8a0778323e92cbe63e62a0b1fd960372a563b2296cc9f653cb00dfebb637de3</citedby><cites>FETCH-LOGICAL-c417t-ed8a0778323e92cbe63e62a0b1fd960372a563b2296cc9f653cb00dfebb637de3</cites><orcidid>0000-0002-9403-9509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24291701$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Healy, Andrew T., MD</creatorcontrib><creatorcontrib>Lubelski, Daniel, BA</creatorcontrib><creatorcontrib>Mageswaran, Prasath, PhD</creatorcontrib><creatorcontrib>Bhowmick, Deb A., MD</creatorcontrib><creatorcontrib>Bartsch, Adam J., PhD, PE</creatorcontrib><creatorcontrib>Benzel, Edward C., MD</creatorcontrib><creatorcontrib>Mroz, Thomas E., MD</creatorcontrib><title>Biomechanical analysis of the upper thoracic spine after decompressive procedures</title><title>The spine journal</title><addtitle>Spine J</addtitle><description>Abstract Background context Decompressive procedures such as laminectomy, facetectomy, and costotransversectomy are routinely performed for various pathologies in the thoracic spine. The thoracic spine is unique, in part, because of the sternocostovertebral articulations that provide additional strength to the region relative to the cervical and lumbar spines. During decompressive surgeries, stability is compromised at a presently unknown point. Purpose To evaluate thoracic spinal stability after common surgical decompressive procedures in thoracic spines with intact sternocostovertebral articulations. Study design Biomechanical cadaveric study. Methods Fresh-frozen human cadaveric spine specimens with intact rib cages, C7–L1 (n=9), were used. An industrial robot tested all spines in axial rotation (AR), lateral bending (LB), and flexion-extension (FE) by applying pure moments (±5 Nm). The specimens were first tested in their intact state and then tested after each of the following sequential surgical decompressive procedures at T4–T5 consisting of laminectomy; unilateral facetectomy; unilateral costotransversectomy, and subsequently instrumented fusion from T3–T7. Results We found that in all three planes of motion, the sequential decompressive procedures caused no statistically significant change in motion between T3–T7 or T1–T12 when compared with intact. In comparing between intact and instrumented specimens, our study found that instrumentation reduced global range of motion (ROM) between T1–T12 by 16.3% (p=.001), 12% (p=.002), and 18.4% (p=.0004) for AR, FE, and LB, respectively. Age showed a negative correlation with motion in FE (r=−0.78, p=.01) and AR (r=−0.7, p=.04). Conclusions Thoracic spine stability was not significantly affected by sequential decompressive procedures in thoracic segments at the level of the true ribs in all three planes of motion in intact thoracic specimens. Age appeared to negatively correlate with ROM of the specimen. Our study suggests that thoracic spinal stability is maintained immediately after unilateral decompression at the level of the true ribs. These preliminary observations, however, do not depict the long-term sequelae of such procedures and warrant further investigation.</description><subject>Aged</subject><subject>Biomechanical Phenomena - physiology</subject><subject>Biomechanics</subject><subject>Cadaver</subject><subject>Costotransversectomy</subject><subject>Decompression</subject><subject>Decompression, Surgical</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Orthopedics</subject><subject>Posture - physiology</subject><subject>Range of Motion, Articular - physiology</subject><subject>Rotation</subject><subject>Spinal Fusion</subject><subject>Spine</subject><subject>Thoracic</subject><subject>Thoracic Vertebrae - physiology</subject><subject>Thoracic Vertebrae - surgery</subject><issn>1529-9430</issn><issn>1878-1632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkU9r3DAQxUVp6OZPv0EJPvZiZ0ayZftSaJc2CQRCSAu5CVkes9rYlivZgf320WbTHnIJCDQSb-Yxv8fYF4QMAeXFNguTHYkyDigyxAxE8YEdY1VWKUrBP8a64HVa5wJW7CSELQBUJfJPbMVzXmMJeMzuflg3kNno0RrdJ3rU_S7YkLgumTeULNNEPlbOa2NN8uKY6G6Ony0ZN0yeQrBPlEzeGWqX-DxjR53uA31-vU_Zn18_f6-v0pvby-v195vU5FjOKbWVhrKsBBdUc9OQFCS5hga7tpYgSq4LKRrOa2lM3clCmAag7ahppChbEqfs62FutP67UJjVYIOhvtcjuSWouHwlcuCFiNL8IDXeheCpU5O3g_Y7haD2MNVWHWCqPUyFqCLM2Hb-6rA0A7X_m_7Ri4JvBwHFPZ8seRWMpTGCsJ7MrFpn33N4O8D09iWJR9pR2LrFx0DiLipwBep-H-g-T4ynFvAgngGNkp1s</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Healy, Andrew T., MD</creator><creator>Lubelski, Daniel, BA</creator><creator>Mageswaran, Prasath, PhD</creator><creator>Bhowmick, Deb A., MD</creator><creator>Bartsch, Adam J., PhD, PE</creator><creator>Benzel, Edward C., MD</creator><creator>Mroz, Thomas E., MD</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9403-9509</orcidid></search><sort><creationdate>20140601</creationdate><title>Biomechanical analysis of the upper thoracic spine after decompressive procedures</title><author>Healy, Andrew T., MD ; Lubelski, Daniel, BA ; Mageswaran, Prasath, PhD ; Bhowmick, Deb A., MD ; Bartsch, Adam J., PhD, PE ; Benzel, Edward C., MD ; Mroz, Thomas E., MD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-ed8a0778323e92cbe63e62a0b1fd960372a563b2296cc9f653cb00dfebb637de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aged</topic><topic>Biomechanical Phenomena - physiology</topic><topic>Biomechanics</topic><topic>Cadaver</topic><topic>Costotransversectomy</topic><topic>Decompression</topic><topic>Decompression, Surgical</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Orthopedics</topic><topic>Posture - physiology</topic><topic>Range of Motion, Articular - physiology</topic><topic>Rotation</topic><topic>Spinal Fusion</topic><topic>Spine</topic><topic>Thoracic</topic><topic>Thoracic Vertebrae - physiology</topic><topic>Thoracic Vertebrae - surgery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Healy, Andrew T., MD</creatorcontrib><creatorcontrib>Lubelski, Daniel, BA</creatorcontrib><creatorcontrib>Mageswaran, Prasath, PhD</creatorcontrib><creatorcontrib>Bhowmick, Deb A., MD</creatorcontrib><creatorcontrib>Bartsch, Adam J., PhD, PE</creatorcontrib><creatorcontrib>Benzel, Edward C., MD</creatorcontrib><creatorcontrib>Mroz, Thomas E., MD</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The spine journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Healy, Andrew T., MD</au><au>Lubelski, Daniel, BA</au><au>Mageswaran, Prasath, PhD</au><au>Bhowmick, Deb A., MD</au><au>Bartsch, Adam J., PhD, PE</au><au>Benzel, Edward C., MD</au><au>Mroz, Thomas E., MD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomechanical analysis of the upper thoracic spine after decompressive procedures</atitle><jtitle>The spine journal</jtitle><addtitle>Spine J</addtitle><date>2014-06-01</date><risdate>2014</risdate><volume>14</volume><issue>6</issue><spage>1010</spage><epage>1016</epage><pages>1010-1016</pages><issn>1529-9430</issn><eissn>1878-1632</eissn><abstract>Abstract Background context Decompressive procedures such as laminectomy, facetectomy, and costotransversectomy are routinely performed for various pathologies in the thoracic spine. The thoracic spine is unique, in part, because of the sternocostovertebral articulations that provide additional strength to the region relative to the cervical and lumbar spines. During decompressive surgeries, stability is compromised at a presently unknown point. Purpose To evaluate thoracic spinal stability after common surgical decompressive procedures in thoracic spines with intact sternocostovertebral articulations. Study design Biomechanical cadaveric study. Methods Fresh-frozen human cadaveric spine specimens with intact rib cages, C7–L1 (n=9), were used. An industrial robot tested all spines in axial rotation (AR), lateral bending (LB), and flexion-extension (FE) by applying pure moments (±5 Nm). The specimens were first tested in their intact state and then tested after each of the following sequential surgical decompressive procedures at T4–T5 consisting of laminectomy; unilateral facetectomy; unilateral costotransversectomy, and subsequently instrumented fusion from T3–T7. Results We found that in all three planes of motion, the sequential decompressive procedures caused no statistically significant change in motion between T3–T7 or T1–T12 when compared with intact. In comparing between intact and instrumented specimens, our study found that instrumentation reduced global range of motion (ROM) between T1–T12 by 16.3% (p=.001), 12% (p=.002), and 18.4% (p=.0004) for AR, FE, and LB, respectively. Age showed a negative correlation with motion in FE (r=−0.78, p=.01) and AR (r=−0.7, p=.04). Conclusions Thoracic spine stability was not significantly affected by sequential decompressive procedures in thoracic segments at the level of the true ribs in all three planes of motion in intact thoracic specimens. Age appeared to negatively correlate with ROM of the specimen. Our study suggests that thoracic spinal stability is maintained immediately after unilateral decompression at the level of the true ribs. These preliminary observations, however, do not depict the long-term sequelae of such procedures and warrant further investigation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24291701</pmid><doi>10.1016/j.spinee.2013.11.035</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9403-9509</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1529-9430 |
ispartof | The spine journal, 2014-06, Vol.14 (6), p.1010-1016 |
issn | 1529-9430 1878-1632 |
language | eng |
recordid | cdi_proquest_miscellaneous_1528340253 |
source | ScienceDirect Journals |
subjects | Aged Biomechanical Phenomena - physiology Biomechanics Cadaver Costotransversectomy Decompression Decompression, Surgical Female Humans Male Middle Aged Orthopedics Posture - physiology Range of Motion, Articular - physiology Rotation Spinal Fusion Spine Thoracic Thoracic Vertebrae - physiology Thoracic Vertebrae - surgery |
title | Biomechanical analysis of the upper thoracic spine after decompressive procedures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A33%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomechanical%20analysis%20of%20the%20upper%20thoracic%20spine%20after%20decompressive%20procedures&rft.jtitle=The%20spine%20journal&rft.au=Healy,%20Andrew%20T.,%20MD&rft.date=2014-06-01&rft.volume=14&rft.issue=6&rft.spage=1010&rft.epage=1016&rft.pages=1010-1016&rft.issn=1529-9430&rft.eissn=1878-1632&rft_id=info:doi/10.1016/j.spinee.2013.11.035&rft_dat=%3Cproquest_cross%3E1528340253%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c417t-ed8a0778323e92cbe63e62a0b1fd960372a563b2296cc9f653cb00dfebb637de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1528340253&rft_id=info:pmid/24291701&rfr_iscdi=true |