Loading…
Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate
Extreme precipitation has been projected to increase more than the mean under future changed climate, but its mechanism is not clear. We have separated the ‘dynamic’ and ‘thermodynamic’ components of the mean and extreme precipitation changes projected in 6 climate model experiments. The dynamic cha...
Saved in:
Published in: | Geophysical research letters 2005-09, Vol.32 (17), p.L17706.1-n/a |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Extreme precipitation has been projected to increase more than the mean under future changed climate, but its mechanism is not clear. We have separated the ‘dynamic’ and ‘thermodynamic’ components of the mean and extreme precipitation changes projected in 6 climate model experiments. The dynamic change is due to the change in atmospheric motion, while the thermodynamic change is due to the change in atmospheric moisture content. The model results consistently show that there are areas with small change or decreases in the thermodynamic change for mean precipitation mainly over subtropics, while the thermodynamic change for extreme precipitation is an overall increase as a result of increased atmospheric moisture. The dynamic changes play a secondary role in the difference between mean and extreme and are limited to lower latitudes. Over many parts of mid‐ to high latitudes, mean and extreme precipitation increase in comparable magnitude due to a comparable thermodynamic increase. |
---|---|
ISSN: | 0094-8276 1944-8007 |
DOI: | 10.1029/2005GL023272 |