Loading…
Development and Maintenance Mechanism for the Semiannual Oscillation of the North Pacific Upper-Level Circulation
The north–south semiannual oscillation (SAO) of the North Pacific jet stream, part of the atmospheric SAO in the Northern Hemisphere, can be well depicted by the semiannual component of the monthly-mean eddy streamfunction. Expressed by the semiannual eddy streamfunction budget, the dynamic processe...
Saved in:
Published in: | Journal of climate 2014-05, Vol.27 (10), p.3767-3783 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c429t-7eb668fae9e20a743a4058953f95cda2726f7c6e71d0196b778206875509564d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c429t-7eb668fae9e20a743a4058953f95cda2726f7c6e71d0196b778206875509564d3 |
container_end_page | 3783 |
container_issue | 10 |
container_start_page | 3767 |
container_title | Journal of climate |
container_volume | 27 |
creator | Chen, Tsing-Chang Tsay, Jenq-Dar |
description | The north–south semiannual oscillation (SAO) of the North Pacific jet stream, part of the atmospheric SAO in the Northern Hemisphere, can be well depicted by the semiannual component of the monthly-mean eddy streamfunction. Expressed by the semiannual eddy streamfunction budget, the dynamic processes develop and maintain the SAO, including the adjustment between vorticity advection and convergence of vorticity flux of the monthly-mean mode and the convergence of transient vorticity flux. An empirical orthogonal function analysis of these dynamic processes shows an east–west elongated cyclonic (anticyclonic) cell of the semiannual eddy streamfunction anomaly, which appears in January and July (October and April) south of the Siberia–Alaska landmass. The maximum (minimum) adjustment processes by the monthly-mean mode and the maximum (minimum) feedback impact of transient activity on the SAO occur in December and June (September and March), a month ahead of the maximum (minimum) north–south SAO of the North Pacific jet stream. Because vorticity is supplied by the convergence of vorticity flux associated with divergent flow, the SAO for the rotational flow is established by diabatic heat and heat transport through the divergent circulation over the North Pacific Ocean, and by precipitation maintained by convergence of water vapor flux along the oceanic storm track. Additionally, the feedback impact of the modulated transient activity affects the SAO development of the atmospheric rotational and divergent circulations, and the hydrological cycle. |
doi_str_mv | 10.1175/JCLI-D-12-00418.1 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1529934200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26193444</jstor_id><sourcerecordid>26193444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-7eb668fae9e20a743a4058953f95cda2726f7c6e71d0196b778206875509564d3</originalsourceid><addsrcrecordid>eNp9kU-LFDEQxYMoOK5-AA9CQAQvWSvp_D3KjO6uzLqC7jlkM2kmQ3fSm3QLfnszO4uCB091qF89Xr2H0GsK55Qq8eHLentFNoQyAsCpPqdP0IoKBgQ4Z0_RCrThRCshnqMXtR4AKJMAK3S_CT_DkKcxpBm7tMPXLqY5JJd8wNfB712KdcR9LnjeB_w9jNGltLgB31Qfh8HNMSec-4ft11zmPf7mfOyjx7fTFArZHvXxOha_nOCX6FnvhhpePc4zdPv504_1JdneXFytP26J58zMRIU7KXXvggkMnOKd4yC0EV1vhN85ppjslZdB0R1QI--U0gzk8UMwQvJdd4ben3Snku-XUGc7xupDs5xCXqpt6RjTcQbQ0Lf_oIe8lNTcWaZpJ6TRkv-PalqCM8EoaxQ9Ub7kWkvo7VTi6MovS8Eeq7LHquzGUmYfqrK03bx7VHbVu6EvLf1Y_xwyzTVVUjTuzYk71DmXv3tJ2yOcd78Bnzubuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1525425212</pqid></control><display><type>article</type><title>Development and Maintenance Mechanism for the Semiannual Oscillation of the North Pacific Upper-Level Circulation</title><source>JSTOR</source><creator>Chen, Tsing-Chang ; Tsay, Jenq-Dar</creator><creatorcontrib>Chen, Tsing-Chang ; Tsay, Jenq-Dar</creatorcontrib><description>The north–south semiannual oscillation (SAO) of the North Pacific jet stream, part of the atmospheric SAO in the Northern Hemisphere, can be well depicted by the semiannual component of the monthly-mean eddy streamfunction. Expressed by the semiannual eddy streamfunction budget, the dynamic processes develop and maintain the SAO, including the adjustment between vorticity advection and convergence of vorticity flux of the monthly-mean mode and the convergence of transient vorticity flux. An empirical orthogonal function analysis of these dynamic processes shows an east–west elongated cyclonic (anticyclonic) cell of the semiannual eddy streamfunction anomaly, which appears in January and July (October and April) south of the Siberia–Alaska landmass. The maximum (minimum) adjustment processes by the monthly-mean mode and the maximum (minimum) feedback impact of transient activity on the SAO occur in December and June (September and March), a month ahead of the maximum (minimum) north–south SAO of the North Pacific jet stream. Because vorticity is supplied by the convergence of vorticity flux associated with divergent flow, the SAO for the rotational flow is established by diabatic heat and heat transport through the divergent circulation over the North Pacific Ocean, and by precipitation maintained by convergence of water vapor flux along the oceanic storm track. Additionally, the feedback impact of the modulated transient activity affects the SAO development of the atmospheric rotational and divergent circulations, and the hydrological cycle.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/JCLI-D-12-00418.1</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Advection ; Atmospheric circulation ; Atmospherics ; Budgets ; Convergence ; Cyclones ; Earth, ocean, space ; Eigenvectors ; Empirical analysis ; Exact sciences and technology ; External geophysics ; Feedback ; Fluctuations ; Fluid flow ; Function analysis ; General circulation. Atmospheric waves ; Heat ; Heat transport ; Hydrologic cycle ; Hydrological cycle ; Hydrology ; Jet stream ; Jet streams ; Jet streams (meteorology) ; Marine ; Meteorology ; Monthly ; Northern Hemisphere ; Oceanic analysis ; Oceans ; Orthogonal functions ; Precipitation ; Rain ; Rivers ; Rotation ; Rotational flow ; Semiannual oscillation ; Storm tracks ; Storms ; Temperature ; Variables ; Vortices ; Vorticity ; Water balance ; Water vapor ; Water vapor flux ; Water vapour ; Weather ; Wind</subject><ispartof>Journal of climate, 2014-05, Vol.27 (10), p.3767-3783</ispartof><rights>2014 American Meteorological Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Meteorological Society May 15, 2014</rights><rights>Copyright American Meteorological Society 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-7eb668fae9e20a743a4058953f95cda2726f7c6e71d0196b778206875509564d3</citedby><cites>FETCH-LOGICAL-c429t-7eb668fae9e20a743a4058953f95cda2726f7c6e71d0196b778206875509564d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26193444$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26193444$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,58219,58452</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28481765$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Tsing-Chang</creatorcontrib><creatorcontrib>Tsay, Jenq-Dar</creatorcontrib><title>Development and Maintenance Mechanism for the Semiannual Oscillation of the North Pacific Upper-Level Circulation</title><title>Journal of climate</title><description>The north–south semiannual oscillation (SAO) of the North Pacific jet stream, part of the atmospheric SAO in the Northern Hemisphere, can be well depicted by the semiannual component of the monthly-mean eddy streamfunction. Expressed by the semiannual eddy streamfunction budget, the dynamic processes develop and maintain the SAO, including the adjustment between vorticity advection and convergence of vorticity flux of the monthly-mean mode and the convergence of transient vorticity flux. An empirical orthogonal function analysis of these dynamic processes shows an east–west elongated cyclonic (anticyclonic) cell of the semiannual eddy streamfunction anomaly, which appears in January and July (October and April) south of the Siberia–Alaska landmass. The maximum (minimum) adjustment processes by the monthly-mean mode and the maximum (minimum) feedback impact of transient activity on the SAO occur in December and June (September and March), a month ahead of the maximum (minimum) north–south SAO of the North Pacific jet stream. Because vorticity is supplied by the convergence of vorticity flux associated with divergent flow, the SAO for the rotational flow is established by diabatic heat and heat transport through the divergent circulation over the North Pacific Ocean, and by precipitation maintained by convergence of water vapor flux along the oceanic storm track. Additionally, the feedback impact of the modulated transient activity affects the SAO development of the atmospheric rotational and divergent circulations, and the hydrological cycle.</description><subject>Advection</subject><subject>Atmospheric circulation</subject><subject>Atmospherics</subject><subject>Budgets</subject><subject>Convergence</subject><subject>Cyclones</subject><subject>Earth, ocean, space</subject><subject>Eigenvectors</subject><subject>Empirical analysis</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Feedback</subject><subject>Fluctuations</subject><subject>Fluid flow</subject><subject>Function analysis</subject><subject>General circulation. Atmospheric waves</subject><subject>Heat</subject><subject>Heat transport</subject><subject>Hydrologic cycle</subject><subject>Hydrological cycle</subject><subject>Hydrology</subject><subject>Jet stream</subject><subject>Jet streams</subject><subject>Jet streams (meteorology)</subject><subject>Marine</subject><subject>Meteorology</subject><subject>Monthly</subject><subject>Northern Hemisphere</subject><subject>Oceanic analysis</subject><subject>Oceans</subject><subject>Orthogonal functions</subject><subject>Precipitation</subject><subject>Rain</subject><subject>Rivers</subject><subject>Rotation</subject><subject>Rotational flow</subject><subject>Semiannual oscillation</subject><subject>Storm tracks</subject><subject>Storms</subject><subject>Temperature</subject><subject>Variables</subject><subject>Vortices</subject><subject>Vorticity</subject><subject>Water balance</subject><subject>Water vapor</subject><subject>Water vapor flux</subject><subject>Water vapour</subject><subject>Weather</subject><subject>Wind</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kU-LFDEQxYMoOK5-AA9CQAQvWSvp_D3KjO6uzLqC7jlkM2kmQ3fSm3QLfnszO4uCB091qF89Xr2H0GsK55Qq8eHLentFNoQyAsCpPqdP0IoKBgQ4Z0_RCrThRCshnqMXtR4AKJMAK3S_CT_DkKcxpBm7tMPXLqY5JJd8wNfB712KdcR9LnjeB_w9jNGltLgB31Qfh8HNMSec-4ft11zmPf7mfOyjx7fTFArZHvXxOha_nOCX6FnvhhpePc4zdPv504_1JdneXFytP26J58zMRIU7KXXvggkMnOKd4yC0EV1vhN85ppjslZdB0R1QI--U0gzk8UMwQvJdd4ben3Snku-XUGc7xupDs5xCXqpt6RjTcQbQ0Lf_oIe8lNTcWaZpJ6TRkv-PalqCM8EoaxQ9Ub7kWkvo7VTi6MovS8Eeq7LHquzGUmYfqrK03bx7VHbVu6EvLf1Y_xwyzTVVUjTuzYk71DmXv3tJ2yOcd78Bnzubuw</recordid><startdate>20140515</startdate><enddate>20140515</enddate><creator>Chen, Tsing-Chang</creator><creator>Tsay, Jenq-Dar</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>PRINS</scope><scope>7TN</scope></search><sort><creationdate>20140515</creationdate><title>Development and Maintenance Mechanism for the Semiannual Oscillation of the North Pacific Upper-Level Circulation</title><author>Chen, Tsing-Chang ; Tsay, Jenq-Dar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-7eb668fae9e20a743a4058953f95cda2726f7c6e71d0196b778206875509564d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Advection</topic><topic>Atmospheric circulation</topic><topic>Atmospherics</topic><topic>Budgets</topic><topic>Convergence</topic><topic>Cyclones</topic><topic>Earth, ocean, space</topic><topic>Eigenvectors</topic><topic>Empirical analysis</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Feedback</topic><topic>Fluctuations</topic><topic>Fluid flow</topic><topic>Function analysis</topic><topic>General circulation. Atmospheric waves</topic><topic>Heat</topic><topic>Heat transport</topic><topic>Hydrologic cycle</topic><topic>Hydrological cycle</topic><topic>Hydrology</topic><topic>Jet stream</topic><topic>Jet streams</topic><topic>Jet streams (meteorology)</topic><topic>Marine</topic><topic>Meteorology</topic><topic>Monthly</topic><topic>Northern Hemisphere</topic><topic>Oceanic analysis</topic><topic>Oceans</topic><topic>Orthogonal functions</topic><topic>Precipitation</topic><topic>Rain</topic><topic>Rivers</topic><topic>Rotation</topic><topic>Rotational flow</topic><topic>Semiannual oscillation</topic><topic>Storm tracks</topic><topic>Storms</topic><topic>Temperature</topic><topic>Variables</topic><topic>Vortices</topic><topic>Vorticity</topic><topic>Water balance</topic><topic>Water vapor</topic><topic>Water vapor flux</topic><topic>Water vapour</topic><topic>Weather</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Tsing-Chang</creatorcontrib><creatorcontrib>Tsay, Jenq-Dar</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Agriculture Science Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>ProQuest Central China</collection><collection>Oceanic Abstracts</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Tsing-Chang</au><au>Tsay, Jenq-Dar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and Maintenance Mechanism for the Semiannual Oscillation of the North Pacific Upper-Level Circulation</atitle><jtitle>Journal of climate</jtitle><date>2014-05-15</date><risdate>2014</risdate><volume>27</volume><issue>10</issue><spage>3767</spage><epage>3783</epage><pages>3767-3783</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>The north–south semiannual oscillation (SAO) of the North Pacific jet stream, part of the atmospheric SAO in the Northern Hemisphere, can be well depicted by the semiannual component of the monthly-mean eddy streamfunction. Expressed by the semiannual eddy streamfunction budget, the dynamic processes develop and maintain the SAO, including the adjustment between vorticity advection and convergence of vorticity flux of the monthly-mean mode and the convergence of transient vorticity flux. An empirical orthogonal function analysis of these dynamic processes shows an east–west elongated cyclonic (anticyclonic) cell of the semiannual eddy streamfunction anomaly, which appears in January and July (October and April) south of the Siberia–Alaska landmass. The maximum (minimum) adjustment processes by the monthly-mean mode and the maximum (minimum) feedback impact of transient activity on the SAO occur in December and June (September and March), a month ahead of the maximum (minimum) north–south SAO of the North Pacific jet stream. Because vorticity is supplied by the convergence of vorticity flux associated with divergent flow, the SAO for the rotational flow is established by diabatic heat and heat transport through the divergent circulation over the North Pacific Ocean, and by precipitation maintained by convergence of water vapor flux along the oceanic storm track. Additionally, the feedback impact of the modulated transient activity affects the SAO development of the atmospheric rotational and divergent circulations, and the hydrological cycle.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/JCLI-D-12-00418.1</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-8755 |
ispartof | Journal of climate, 2014-05, Vol.27 (10), p.3767-3783 |
issn | 0894-8755 1520-0442 |
language | eng |
recordid | cdi_proquest_miscellaneous_1529934200 |
source | JSTOR |
subjects | Advection Atmospheric circulation Atmospherics Budgets Convergence Cyclones Earth, ocean, space Eigenvectors Empirical analysis Exact sciences and technology External geophysics Feedback Fluctuations Fluid flow Function analysis General circulation. Atmospheric waves Heat Heat transport Hydrologic cycle Hydrological cycle Hydrology Jet stream Jet streams Jet streams (meteorology) Marine Meteorology Monthly Northern Hemisphere Oceanic analysis Oceans Orthogonal functions Precipitation Rain Rivers Rotation Rotational flow Semiannual oscillation Storm tracks Storms Temperature Variables Vortices Vorticity Water balance Water vapor Water vapor flux Water vapour Weather Wind |
title | Development and Maintenance Mechanism for the Semiannual Oscillation of the North Pacific Upper-Level Circulation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A42%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20Maintenance%20Mechanism%20for%20the%20Semiannual%20Oscillation%20of%20the%20North%20Pacific%20Upper-Level%20Circulation&rft.jtitle=Journal%20of%20climate&rft.au=Chen,%20Tsing-Chang&rft.date=2014-05-15&rft.volume=27&rft.issue=10&rft.spage=3767&rft.epage=3783&rft.pages=3767-3783&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/JCLI-D-12-00418.1&rft_dat=%3Cjstor_proqu%3E26193444%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-7eb668fae9e20a743a4058953f95cda2726f7c6e71d0196b778206875509564d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1525425212&rft_id=info:pmid/&rft_jstor_id=26193444&rfr_iscdi=true |