Loading…

Development and Maintenance Mechanism for the Semiannual Oscillation of the North Pacific Upper-Level Circulation

The north–south semiannual oscillation (SAO) of the North Pacific jet stream, part of the atmospheric SAO in the Northern Hemisphere, can be well depicted by the semiannual component of the monthly-mean eddy streamfunction. Expressed by the semiannual eddy streamfunction budget, the dynamic processe...

Full description

Saved in:
Bibliographic Details
Published in:Journal of climate 2014-05, Vol.27 (10), p.3767-3783
Main Authors: Chen, Tsing-Chang, Tsay, Jenq-Dar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c429t-7eb668fae9e20a743a4058953f95cda2726f7c6e71d0196b778206875509564d3
cites cdi_FETCH-LOGICAL-c429t-7eb668fae9e20a743a4058953f95cda2726f7c6e71d0196b778206875509564d3
container_end_page 3783
container_issue 10
container_start_page 3767
container_title Journal of climate
container_volume 27
creator Chen, Tsing-Chang
Tsay, Jenq-Dar
description The north–south semiannual oscillation (SAO) of the North Pacific jet stream, part of the atmospheric SAO in the Northern Hemisphere, can be well depicted by the semiannual component of the monthly-mean eddy streamfunction. Expressed by the semiannual eddy streamfunction budget, the dynamic processes develop and maintain the SAO, including the adjustment between vorticity advection and convergence of vorticity flux of the monthly-mean mode and the convergence of transient vorticity flux. An empirical orthogonal function analysis of these dynamic processes shows an east–west elongated cyclonic (anticyclonic) cell of the semiannual eddy streamfunction anomaly, which appears in January and July (October and April) south of the Siberia–Alaska landmass. The maximum (minimum) adjustment processes by the monthly-mean mode and the maximum (minimum) feedback impact of transient activity on the SAO occur in December and June (September and March), a month ahead of the maximum (minimum) north–south SAO of the North Pacific jet stream. Because vorticity is supplied by the convergence of vorticity flux associated with divergent flow, the SAO for the rotational flow is established by diabatic heat and heat transport through the divergent circulation over the North Pacific Ocean, and by precipitation maintained by convergence of water vapor flux along the oceanic storm track. Additionally, the feedback impact of the modulated transient activity affects the SAO development of the atmospheric rotational and divergent circulations, and the hydrological cycle.
doi_str_mv 10.1175/JCLI-D-12-00418.1
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1529934200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26193444</jstor_id><sourcerecordid>26193444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-7eb668fae9e20a743a4058953f95cda2726f7c6e71d0196b778206875509564d3</originalsourceid><addsrcrecordid>eNp9kU-LFDEQxYMoOK5-AA9CQAQvWSvp_D3KjO6uzLqC7jlkM2kmQ3fSm3QLfnszO4uCB091qF89Xr2H0GsK55Qq8eHLentFNoQyAsCpPqdP0IoKBgQ4Z0_RCrThRCshnqMXtR4AKJMAK3S_CT_DkKcxpBm7tMPXLqY5JJd8wNfB712KdcR9LnjeB_w9jNGltLgB31Qfh8HNMSec-4ft11zmPf7mfOyjx7fTFArZHvXxOha_nOCX6FnvhhpePc4zdPv504_1JdneXFytP26J58zMRIU7KXXvggkMnOKd4yC0EV1vhN85ppjslZdB0R1QI--U0gzk8UMwQvJdd4ben3Snku-XUGc7xupDs5xCXqpt6RjTcQbQ0Lf_oIe8lNTcWaZpJ6TRkv-PalqCM8EoaxQ9Ub7kWkvo7VTi6MovS8Eeq7LHquzGUmYfqrK03bx7VHbVu6EvLf1Y_xwyzTVVUjTuzYk71DmXv3tJ2yOcd78Bnzubuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1525425212</pqid></control><display><type>article</type><title>Development and Maintenance Mechanism for the Semiannual Oscillation of the North Pacific Upper-Level Circulation</title><source>JSTOR</source><creator>Chen, Tsing-Chang ; Tsay, Jenq-Dar</creator><creatorcontrib>Chen, Tsing-Chang ; Tsay, Jenq-Dar</creatorcontrib><description>The north–south semiannual oscillation (SAO) of the North Pacific jet stream, part of the atmospheric SAO in the Northern Hemisphere, can be well depicted by the semiannual component of the monthly-mean eddy streamfunction. Expressed by the semiannual eddy streamfunction budget, the dynamic processes develop and maintain the SAO, including the adjustment between vorticity advection and convergence of vorticity flux of the monthly-mean mode and the convergence of transient vorticity flux. An empirical orthogonal function analysis of these dynamic processes shows an east–west elongated cyclonic (anticyclonic) cell of the semiannual eddy streamfunction anomaly, which appears in January and July (October and April) south of the Siberia–Alaska landmass. The maximum (minimum) adjustment processes by the monthly-mean mode and the maximum (minimum) feedback impact of transient activity on the SAO occur in December and June (September and March), a month ahead of the maximum (minimum) north–south SAO of the North Pacific jet stream. Because vorticity is supplied by the convergence of vorticity flux associated with divergent flow, the SAO for the rotational flow is established by diabatic heat and heat transport through the divergent circulation over the North Pacific Ocean, and by precipitation maintained by convergence of water vapor flux along the oceanic storm track. Additionally, the feedback impact of the modulated transient activity affects the SAO development of the atmospheric rotational and divergent circulations, and the hydrological cycle.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/JCLI-D-12-00418.1</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Advection ; Atmospheric circulation ; Atmospherics ; Budgets ; Convergence ; Cyclones ; Earth, ocean, space ; Eigenvectors ; Empirical analysis ; Exact sciences and technology ; External geophysics ; Feedback ; Fluctuations ; Fluid flow ; Function analysis ; General circulation. Atmospheric waves ; Heat ; Heat transport ; Hydrologic cycle ; Hydrological cycle ; Hydrology ; Jet stream ; Jet streams ; Jet streams (meteorology) ; Marine ; Meteorology ; Monthly ; Northern Hemisphere ; Oceanic analysis ; Oceans ; Orthogonal functions ; Precipitation ; Rain ; Rivers ; Rotation ; Rotational flow ; Semiannual oscillation ; Storm tracks ; Storms ; Temperature ; Variables ; Vortices ; Vorticity ; Water balance ; Water vapor ; Water vapor flux ; Water vapour ; Weather ; Wind</subject><ispartof>Journal of climate, 2014-05, Vol.27 (10), p.3767-3783</ispartof><rights>2014 American Meteorological Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Meteorological Society May 15, 2014</rights><rights>Copyright American Meteorological Society 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-7eb668fae9e20a743a4058953f95cda2726f7c6e71d0196b778206875509564d3</citedby><cites>FETCH-LOGICAL-c429t-7eb668fae9e20a743a4058953f95cda2726f7c6e71d0196b778206875509564d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26193444$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26193444$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,58219,58452</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28481765$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Tsing-Chang</creatorcontrib><creatorcontrib>Tsay, Jenq-Dar</creatorcontrib><title>Development and Maintenance Mechanism for the Semiannual Oscillation of the North Pacific Upper-Level Circulation</title><title>Journal of climate</title><description>The north–south semiannual oscillation (SAO) of the North Pacific jet stream, part of the atmospheric SAO in the Northern Hemisphere, can be well depicted by the semiannual component of the monthly-mean eddy streamfunction. Expressed by the semiannual eddy streamfunction budget, the dynamic processes develop and maintain the SAO, including the adjustment between vorticity advection and convergence of vorticity flux of the monthly-mean mode and the convergence of transient vorticity flux. An empirical orthogonal function analysis of these dynamic processes shows an east–west elongated cyclonic (anticyclonic) cell of the semiannual eddy streamfunction anomaly, which appears in January and July (October and April) south of the Siberia–Alaska landmass. The maximum (minimum) adjustment processes by the monthly-mean mode and the maximum (minimum) feedback impact of transient activity on the SAO occur in December and June (September and March), a month ahead of the maximum (minimum) north–south SAO of the North Pacific jet stream. Because vorticity is supplied by the convergence of vorticity flux associated with divergent flow, the SAO for the rotational flow is established by diabatic heat and heat transport through the divergent circulation over the North Pacific Ocean, and by precipitation maintained by convergence of water vapor flux along the oceanic storm track. Additionally, the feedback impact of the modulated transient activity affects the SAO development of the atmospheric rotational and divergent circulations, and the hydrological cycle.</description><subject>Advection</subject><subject>Atmospheric circulation</subject><subject>Atmospherics</subject><subject>Budgets</subject><subject>Convergence</subject><subject>Cyclones</subject><subject>Earth, ocean, space</subject><subject>Eigenvectors</subject><subject>Empirical analysis</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Feedback</subject><subject>Fluctuations</subject><subject>Fluid flow</subject><subject>Function analysis</subject><subject>General circulation. Atmospheric waves</subject><subject>Heat</subject><subject>Heat transport</subject><subject>Hydrologic cycle</subject><subject>Hydrological cycle</subject><subject>Hydrology</subject><subject>Jet stream</subject><subject>Jet streams</subject><subject>Jet streams (meteorology)</subject><subject>Marine</subject><subject>Meteorology</subject><subject>Monthly</subject><subject>Northern Hemisphere</subject><subject>Oceanic analysis</subject><subject>Oceans</subject><subject>Orthogonal functions</subject><subject>Precipitation</subject><subject>Rain</subject><subject>Rivers</subject><subject>Rotation</subject><subject>Rotational flow</subject><subject>Semiannual oscillation</subject><subject>Storm tracks</subject><subject>Storms</subject><subject>Temperature</subject><subject>Variables</subject><subject>Vortices</subject><subject>Vorticity</subject><subject>Water balance</subject><subject>Water vapor</subject><subject>Water vapor flux</subject><subject>Water vapour</subject><subject>Weather</subject><subject>Wind</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kU-LFDEQxYMoOK5-AA9CQAQvWSvp_D3KjO6uzLqC7jlkM2kmQ3fSm3QLfnszO4uCB091qF89Xr2H0GsK55Qq8eHLentFNoQyAsCpPqdP0IoKBgQ4Z0_RCrThRCshnqMXtR4AKJMAK3S_CT_DkKcxpBm7tMPXLqY5JJd8wNfB712KdcR9LnjeB_w9jNGltLgB31Qfh8HNMSec-4ft11zmPf7mfOyjx7fTFArZHvXxOha_nOCX6FnvhhpePc4zdPv504_1JdneXFytP26J58zMRIU7KXXvggkMnOKd4yC0EV1vhN85ppjslZdB0R1QI--U0gzk8UMwQvJdd4ben3Snku-XUGc7xupDs5xCXqpt6RjTcQbQ0Lf_oIe8lNTcWaZpJ6TRkv-PalqCM8EoaxQ9Ub7kWkvo7VTi6MovS8Eeq7LHquzGUmYfqrK03bx7VHbVu6EvLf1Y_xwyzTVVUjTuzYk71DmXv3tJ2yOcd78Bnzubuw</recordid><startdate>20140515</startdate><enddate>20140515</enddate><creator>Chen, Tsing-Chang</creator><creator>Tsay, Jenq-Dar</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>PRINS</scope><scope>7TN</scope></search><sort><creationdate>20140515</creationdate><title>Development and Maintenance Mechanism for the Semiannual Oscillation of the North Pacific Upper-Level Circulation</title><author>Chen, Tsing-Chang ; Tsay, Jenq-Dar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-7eb668fae9e20a743a4058953f95cda2726f7c6e71d0196b778206875509564d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Advection</topic><topic>Atmospheric circulation</topic><topic>Atmospherics</topic><topic>Budgets</topic><topic>Convergence</topic><topic>Cyclones</topic><topic>Earth, ocean, space</topic><topic>Eigenvectors</topic><topic>Empirical analysis</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Feedback</topic><topic>Fluctuations</topic><topic>Fluid flow</topic><topic>Function analysis</topic><topic>General circulation. Atmospheric waves</topic><topic>Heat</topic><topic>Heat transport</topic><topic>Hydrologic cycle</topic><topic>Hydrological cycle</topic><topic>Hydrology</topic><topic>Jet stream</topic><topic>Jet streams</topic><topic>Jet streams (meteorology)</topic><topic>Marine</topic><topic>Meteorology</topic><topic>Monthly</topic><topic>Northern Hemisphere</topic><topic>Oceanic analysis</topic><topic>Oceans</topic><topic>Orthogonal functions</topic><topic>Precipitation</topic><topic>Rain</topic><topic>Rivers</topic><topic>Rotation</topic><topic>Rotational flow</topic><topic>Semiannual oscillation</topic><topic>Storm tracks</topic><topic>Storms</topic><topic>Temperature</topic><topic>Variables</topic><topic>Vortices</topic><topic>Vorticity</topic><topic>Water balance</topic><topic>Water vapor</topic><topic>Water vapor flux</topic><topic>Water vapour</topic><topic>Weather</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Tsing-Chang</creatorcontrib><creatorcontrib>Tsay, Jenq-Dar</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Agriculture Science Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>ProQuest Central China</collection><collection>Oceanic Abstracts</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Tsing-Chang</au><au>Tsay, Jenq-Dar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and Maintenance Mechanism for the Semiannual Oscillation of the North Pacific Upper-Level Circulation</atitle><jtitle>Journal of climate</jtitle><date>2014-05-15</date><risdate>2014</risdate><volume>27</volume><issue>10</issue><spage>3767</spage><epage>3783</epage><pages>3767-3783</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>The north–south semiannual oscillation (SAO) of the North Pacific jet stream, part of the atmospheric SAO in the Northern Hemisphere, can be well depicted by the semiannual component of the monthly-mean eddy streamfunction. Expressed by the semiannual eddy streamfunction budget, the dynamic processes develop and maintain the SAO, including the adjustment between vorticity advection and convergence of vorticity flux of the monthly-mean mode and the convergence of transient vorticity flux. An empirical orthogonal function analysis of these dynamic processes shows an east–west elongated cyclonic (anticyclonic) cell of the semiannual eddy streamfunction anomaly, which appears in January and July (October and April) south of the Siberia–Alaska landmass. The maximum (minimum) adjustment processes by the monthly-mean mode and the maximum (minimum) feedback impact of transient activity on the SAO occur in December and June (September and March), a month ahead of the maximum (minimum) north–south SAO of the North Pacific jet stream. Because vorticity is supplied by the convergence of vorticity flux associated with divergent flow, the SAO for the rotational flow is established by diabatic heat and heat transport through the divergent circulation over the North Pacific Ocean, and by precipitation maintained by convergence of water vapor flux along the oceanic storm track. Additionally, the feedback impact of the modulated transient activity affects the SAO development of the atmospheric rotational and divergent circulations, and the hydrological cycle.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/JCLI-D-12-00418.1</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-8755
ispartof Journal of climate, 2014-05, Vol.27 (10), p.3767-3783
issn 0894-8755
1520-0442
language eng
recordid cdi_proquest_miscellaneous_1529934200
source JSTOR
subjects Advection
Atmospheric circulation
Atmospherics
Budgets
Convergence
Cyclones
Earth, ocean, space
Eigenvectors
Empirical analysis
Exact sciences and technology
External geophysics
Feedback
Fluctuations
Fluid flow
Function analysis
General circulation. Atmospheric waves
Heat
Heat transport
Hydrologic cycle
Hydrological cycle
Hydrology
Jet stream
Jet streams
Jet streams (meteorology)
Marine
Meteorology
Monthly
Northern Hemisphere
Oceanic analysis
Oceans
Orthogonal functions
Precipitation
Rain
Rivers
Rotation
Rotational flow
Semiannual oscillation
Storm tracks
Storms
Temperature
Variables
Vortices
Vorticity
Water balance
Water vapor
Water vapor flux
Water vapour
Weather
Wind
title Development and Maintenance Mechanism for the Semiannual Oscillation of the North Pacific Upper-Level Circulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A42%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20Maintenance%20Mechanism%20for%20the%20Semiannual%20Oscillation%20of%20the%20North%20Pacific%20Upper-Level%20Circulation&rft.jtitle=Journal%20of%20climate&rft.au=Chen,%20Tsing-Chang&rft.date=2014-05-15&rft.volume=27&rft.issue=10&rft.spage=3767&rft.epage=3783&rft.pages=3767-3783&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/JCLI-D-12-00418.1&rft_dat=%3Cjstor_proqu%3E26193444%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-7eb668fae9e20a743a4058953f95cda2726f7c6e71d0196b778206875509564d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1525425212&rft_id=info:pmid/&rft_jstor_id=26193444&rfr_iscdi=true