Loading…
Metabolic and transcriptomic response of the wine yeast Saccharomyces cerevisiae strain EC1118 after an oxygen impulse under carbon‐sufficient, nitrogen‐limited fermentative conditions
During alcoholic fermentation, Saccharomyces cerevisiae is exposed to continuously changing environmental conditions, such as decreasing sugar and increasing ethanol concentrations. Oxygen, a critical nutrient to avoid stuck and sluggish fermentations, is only discretely available throughout the pro...
Saved in:
Published in: | FEMS yeast research 2014-05, Vol.14 (3), p.412-424 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4635-7a015c5fe0ea4f51078241c0a87e7d1cc963cba7f6d057c1ce443fcdf4d827153 |
---|---|
cites | cdi_FETCH-LOGICAL-c4635-7a015c5fe0ea4f51078241c0a87e7d1cc963cba7f6d057c1ce443fcdf4d827153 |
container_end_page | 424 |
container_issue | 3 |
container_start_page | 412 |
container_title | FEMS yeast research |
container_volume | 14 |
creator | Orellana, Marcelo Aceituno, Felipe F Slater, Alex W Almonacid, Leonardo I Melo, Francisco Agosin, Eduardo |
description | During alcoholic fermentation, Saccharomyces cerevisiae is exposed to continuously changing environmental conditions, such as decreasing sugar and increasing ethanol concentrations. Oxygen, a critical nutrient to avoid stuck and sluggish fermentations, is only discretely available throughout the process after pump‐over operation. In this work, we studied the physiological response of the wine yeast S. cerevisiae strain EC1118 to a sudden increase in dissolved oxygen, simulating pump‐over operation. With this aim, an impulse of dissolved oxygen was added to carbon‐sufficient, nitrogen‐limited anaerobic continuous cultures. Results showed that genes related to mitochondrial respiration, ergosterol biosynthesis, and oxidative stress, among other metabolic pathways, were induced after the oxygen impulse. On the other hand, mannoprotein coding genes were repressed. The changes in the expression of these genes are coordinated responses that share common elements at the level of transcriptional regulation. Beneficial and detrimental effects of these physiological processes on wine quality highlight the dual role of oxygen in ‘making or breaking wines’. These findings will facilitate the development of oxygen addition strategies to optimize yeast performance in industrial fermentations. |
doi_str_mv | 10.1111/1567-1364.12135 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1529955043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1111/1567-1364.12135</oup_id><sourcerecordid>1521335637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4635-7a015c5fe0ea4f51078241c0a87e7d1cc963cba7f6d057c1ce443fcdf4d827153</originalsourceid><addsrcrecordid>eNqNksFuFSEUhidGY2t17U5J3BjjbWGAYe7S3LRqUmNi7cIV4Z45tDQzMALTend9hD6QT-OTyPW2N9GYKBvIz3d-DvlPVT1ldJ-VdcBko2aMN2Kf1YzLe9XuVrm_Pctmp3qU0gWlTFHaPqx2asFbpZr5bvX9A2azDL0DYnxHcjQ-QXRjDkORIqYx-IQkWJLPkVw5j2SFJmVyYgDOTQzDCjARwIiXLjmDJBUP58nhovTXEmMzxmJNwrfVGXrihnHqi-Hku6KDicvgf1zfpMlaBw59fk28yzEUtsi9G1zGjliMQ7kz2V0igeA7l13p63H1wJri9uR236tOjw4_L97Njj--fb94czwD0XA5U4YyCdIiRSOsZFS1tWBATatQdQxg3nBYGmWbjkoFDFAIbqGzomtrxSTfq15ufMcYvk6Ysh5cAux74zFMSTNZz-dSUsH_B2W8JMJVQV_8gV6EKfryEV1zLtYP07pQBxsKYkgpotVjdIOJK82oXs-AXqes14nrXzNQKp7d-k7LAbstfxd6AeQGuHI9rv7lp4--fLozfrWpC9P416rZb10838DWBG3Ookv69KSmrKFlDIUqxE_54tYV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2334715302</pqid></control><display><type>article</type><title>Metabolic and transcriptomic response of the wine yeast Saccharomyces cerevisiae strain EC1118 after an oxygen impulse under carbon‐sufficient, nitrogen‐limited fermentative conditions</title><source>Open Access: Oxford University Press Open Journals</source><creator>Orellana, Marcelo ; Aceituno, Felipe F ; Slater, Alex W ; Almonacid, Leonardo I ; Melo, Francisco ; Agosin, Eduardo</creator><creatorcontrib>Orellana, Marcelo ; Aceituno, Felipe F ; Slater, Alex W ; Almonacid, Leonardo I ; Melo, Francisco ; Agosin, Eduardo</creatorcontrib><description>During alcoholic fermentation, Saccharomyces cerevisiae is exposed to continuously changing environmental conditions, such as decreasing sugar and increasing ethanol concentrations. Oxygen, a critical nutrient to avoid stuck and sluggish fermentations, is only discretely available throughout the process after pump‐over operation. In this work, we studied the physiological response of the wine yeast S. cerevisiae strain EC1118 to a sudden increase in dissolved oxygen, simulating pump‐over operation. With this aim, an impulse of dissolved oxygen was added to carbon‐sufficient, nitrogen‐limited anaerobic continuous cultures. Results showed that genes related to mitochondrial respiration, ergosterol biosynthesis, and oxidative stress, among other metabolic pathways, were induced after the oxygen impulse. On the other hand, mannoprotein coding genes were repressed. The changes in the expression of these genes are coordinated responses that share common elements at the level of transcriptional regulation. Beneficial and detrimental effects of these physiological processes on wine quality highlight the dual role of oxygen in ‘making or breaking wines’. These findings will facilitate the development of oxygen addition strategies to optimize yeast performance in industrial fermentations.</description><identifier>ISSN: 1567-1356</identifier><identifier>EISSN: 1567-1364</identifier><identifier>DOI: 10.1111/1567-1364.12135</identifier><identifier>PMID: 24387769</identifier><language>eng</language><publisher>Oxford, UK: Published by Elsevier Science B.V. on behalf of the Federation of European Microbiological Societies</publisher><subject>alcoholic fermentation ; Anaerobiosis ; biochemical pathways ; biosynthesis ; Carbon - metabolism ; Dissolved oxygen ; Environmental conditions ; environmental factors ; Ergosterol ; Ethanol ; Fermentation ; gene expression ; Gene regulation ; genes ; Metabolic Networks and Pathways ; Metabolic pathways ; Metabolism ; Metabolome ; Mitochondria ; Nitrogen - metabolism ; Oxidative Stress ; oxygen ; Oxygen - metabolism ; oxygen impulse ; physiological response ; Physiology ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - drug effects ; Saccharomyces cerevisiae - genetics ; sugars ; Transcription ; transcription (genetics) ; Transcriptome ; transcriptomics ; Vitaceae ; Wine ; Wine - microbiology ; wine quality ; wine yeast ; wine yeasts ; Wines ; Yeast</subject><ispartof>FEMS yeast research, 2014-05, Vol.14 (3), p.412-424</ispartof><rights>2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd 2014</rights><rights>2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved</rights><rights>2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.</rights><rights>2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4635-7a015c5fe0ea4f51078241c0a87e7d1cc963cba7f6d057c1ce443fcdf4d827153</citedby><cites>FETCH-LOGICAL-c4635-7a015c5fe0ea4f51078241c0a87e7d1cc963cba7f6d057c1ce443fcdf4d827153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24387769$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Orellana, Marcelo</creatorcontrib><creatorcontrib>Aceituno, Felipe F</creatorcontrib><creatorcontrib>Slater, Alex W</creatorcontrib><creatorcontrib>Almonacid, Leonardo I</creatorcontrib><creatorcontrib>Melo, Francisco</creatorcontrib><creatorcontrib>Agosin, Eduardo</creatorcontrib><title>Metabolic and transcriptomic response of the wine yeast Saccharomyces cerevisiae strain EC1118 after an oxygen impulse under carbon‐sufficient, nitrogen‐limited fermentative conditions</title><title>FEMS yeast research</title><addtitle>FEMS Yeast Res</addtitle><description>During alcoholic fermentation, Saccharomyces cerevisiae is exposed to continuously changing environmental conditions, such as decreasing sugar and increasing ethanol concentrations. Oxygen, a critical nutrient to avoid stuck and sluggish fermentations, is only discretely available throughout the process after pump‐over operation. In this work, we studied the physiological response of the wine yeast S. cerevisiae strain EC1118 to a sudden increase in dissolved oxygen, simulating pump‐over operation. With this aim, an impulse of dissolved oxygen was added to carbon‐sufficient, nitrogen‐limited anaerobic continuous cultures. Results showed that genes related to mitochondrial respiration, ergosterol biosynthesis, and oxidative stress, among other metabolic pathways, were induced after the oxygen impulse. On the other hand, mannoprotein coding genes were repressed. The changes in the expression of these genes are coordinated responses that share common elements at the level of transcriptional regulation. Beneficial and detrimental effects of these physiological processes on wine quality highlight the dual role of oxygen in ‘making or breaking wines’. These findings will facilitate the development of oxygen addition strategies to optimize yeast performance in industrial fermentations.</description><subject>alcoholic fermentation</subject><subject>Anaerobiosis</subject><subject>biochemical pathways</subject><subject>biosynthesis</subject><subject>Carbon - metabolism</subject><subject>Dissolved oxygen</subject><subject>Environmental conditions</subject><subject>environmental factors</subject><subject>Ergosterol</subject><subject>Ethanol</subject><subject>Fermentation</subject><subject>gene expression</subject><subject>Gene regulation</subject><subject>genes</subject><subject>Metabolic Networks and Pathways</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Metabolome</subject><subject>Mitochondria</subject><subject>Nitrogen - metabolism</subject><subject>Oxidative Stress</subject><subject>oxygen</subject><subject>Oxygen - metabolism</subject><subject>oxygen impulse</subject><subject>physiological response</subject><subject>Physiology</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - drug effects</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>sugars</subject><subject>Transcription</subject><subject>transcription (genetics)</subject><subject>Transcriptome</subject><subject>transcriptomics</subject><subject>Vitaceae</subject><subject>Wine</subject><subject>Wine - microbiology</subject><subject>wine quality</subject><subject>wine yeast</subject><subject>wine yeasts</subject><subject>Wines</subject><subject>Yeast</subject><issn>1567-1356</issn><issn>1567-1364</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNksFuFSEUhidGY2t17U5J3BjjbWGAYe7S3LRqUmNi7cIV4Z45tDQzMALTend9hD6QT-OTyPW2N9GYKBvIz3d-DvlPVT1ldJ-VdcBko2aMN2Kf1YzLe9XuVrm_Pctmp3qU0gWlTFHaPqx2asFbpZr5bvX9A2azDL0DYnxHcjQ-QXRjDkORIqYx-IQkWJLPkVw5j2SFJmVyYgDOTQzDCjARwIiXLjmDJBUP58nhovTXEmMzxmJNwrfVGXrihnHqi-Hku6KDicvgf1zfpMlaBw59fk28yzEUtsi9G1zGjliMQ7kz2V0igeA7l13p63H1wJri9uR236tOjw4_L97Njj--fb94czwD0XA5U4YyCdIiRSOsZFS1tWBATatQdQxg3nBYGmWbjkoFDFAIbqGzomtrxSTfq15ufMcYvk6Ysh5cAux74zFMSTNZz-dSUsH_B2W8JMJVQV_8gV6EKfryEV1zLtYP07pQBxsKYkgpotVjdIOJK82oXs-AXqes14nrXzNQKp7d-k7LAbstfxd6AeQGuHI9rv7lp4--fLozfrWpC9P416rZb10838DWBG3Ookv69KSmrKFlDIUqxE_54tYV</recordid><startdate>201405</startdate><enddate>201405</enddate><creator>Orellana, Marcelo</creator><creator>Aceituno, Felipe F</creator><creator>Slater, Alex W</creator><creator>Almonacid, Leonardo I</creator><creator>Melo, Francisco</creator><creator>Agosin, Eduardo</creator><general>Published by Elsevier Science B.V. on behalf of the Federation of European Microbiological Societies</general><general>Blackwell Publishing Ltd</general><general>Oxford University Press</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>201405</creationdate><title>Metabolic and transcriptomic response of the wine yeast Saccharomyces cerevisiae strain EC1118 after an oxygen impulse under carbon‐sufficient, nitrogen‐limited fermentative conditions</title><author>Orellana, Marcelo ; Aceituno, Felipe F ; Slater, Alex W ; Almonacid, Leonardo I ; Melo, Francisco ; Agosin, Eduardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4635-7a015c5fe0ea4f51078241c0a87e7d1cc963cba7f6d057c1ce443fcdf4d827153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>alcoholic fermentation</topic><topic>Anaerobiosis</topic><topic>biochemical pathways</topic><topic>biosynthesis</topic><topic>Carbon - metabolism</topic><topic>Dissolved oxygen</topic><topic>Environmental conditions</topic><topic>environmental factors</topic><topic>Ergosterol</topic><topic>Ethanol</topic><topic>Fermentation</topic><topic>gene expression</topic><topic>Gene regulation</topic><topic>genes</topic><topic>Metabolic Networks and Pathways</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Metabolome</topic><topic>Mitochondria</topic><topic>Nitrogen - metabolism</topic><topic>Oxidative Stress</topic><topic>oxygen</topic><topic>Oxygen - metabolism</topic><topic>oxygen impulse</topic><topic>physiological response</topic><topic>Physiology</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - drug effects</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>sugars</topic><topic>Transcription</topic><topic>transcription (genetics)</topic><topic>Transcriptome</topic><topic>transcriptomics</topic><topic>Vitaceae</topic><topic>Wine</topic><topic>Wine - microbiology</topic><topic>wine quality</topic><topic>wine yeast</topic><topic>wine yeasts</topic><topic>Wines</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orellana, Marcelo</creatorcontrib><creatorcontrib>Aceituno, Felipe F</creatorcontrib><creatorcontrib>Slater, Alex W</creatorcontrib><creatorcontrib>Almonacid, Leonardo I</creatorcontrib><creatorcontrib>Melo, Francisco</creatorcontrib><creatorcontrib>Agosin, Eduardo</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>FEMS yeast research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orellana, Marcelo</au><au>Aceituno, Felipe F</au><au>Slater, Alex W</au><au>Almonacid, Leonardo I</au><au>Melo, Francisco</au><au>Agosin, Eduardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic and transcriptomic response of the wine yeast Saccharomyces cerevisiae strain EC1118 after an oxygen impulse under carbon‐sufficient, nitrogen‐limited fermentative conditions</atitle><jtitle>FEMS yeast research</jtitle><addtitle>FEMS Yeast Res</addtitle><date>2014-05</date><risdate>2014</risdate><volume>14</volume><issue>3</issue><spage>412</spage><epage>424</epage><pages>412-424</pages><issn>1567-1356</issn><eissn>1567-1364</eissn><abstract>During alcoholic fermentation, Saccharomyces cerevisiae is exposed to continuously changing environmental conditions, such as decreasing sugar and increasing ethanol concentrations. Oxygen, a critical nutrient to avoid stuck and sluggish fermentations, is only discretely available throughout the process after pump‐over operation. In this work, we studied the physiological response of the wine yeast S. cerevisiae strain EC1118 to a sudden increase in dissolved oxygen, simulating pump‐over operation. With this aim, an impulse of dissolved oxygen was added to carbon‐sufficient, nitrogen‐limited anaerobic continuous cultures. Results showed that genes related to mitochondrial respiration, ergosterol biosynthesis, and oxidative stress, among other metabolic pathways, were induced after the oxygen impulse. On the other hand, mannoprotein coding genes were repressed. The changes in the expression of these genes are coordinated responses that share common elements at the level of transcriptional regulation. Beneficial and detrimental effects of these physiological processes on wine quality highlight the dual role of oxygen in ‘making or breaking wines’. These findings will facilitate the development of oxygen addition strategies to optimize yeast performance in industrial fermentations.</abstract><cop>Oxford, UK</cop><pub>Published by Elsevier Science B.V. on behalf of the Federation of European Microbiological Societies</pub><pmid>24387769</pmid><doi>10.1111/1567-1364.12135</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1567-1356 |
ispartof | FEMS yeast research, 2014-05, Vol.14 (3), p.412-424 |
issn | 1567-1356 1567-1364 |
language | eng |
recordid | cdi_proquest_miscellaneous_1529955043 |
source | Open Access: Oxford University Press Open Journals |
subjects | alcoholic fermentation Anaerobiosis biochemical pathways biosynthesis Carbon - metabolism Dissolved oxygen Environmental conditions environmental factors Ergosterol Ethanol Fermentation gene expression Gene regulation genes Metabolic Networks and Pathways Metabolic pathways Metabolism Metabolome Mitochondria Nitrogen - metabolism Oxidative Stress oxygen Oxygen - metabolism oxygen impulse physiological response Physiology Saccharomyces cerevisiae Saccharomyces cerevisiae - drug effects Saccharomyces cerevisiae - genetics sugars Transcription transcription (genetics) Transcriptome transcriptomics Vitaceae Wine Wine - microbiology wine quality wine yeast wine yeasts Wines Yeast |
title | Metabolic and transcriptomic response of the wine yeast Saccharomyces cerevisiae strain EC1118 after an oxygen impulse under carbon‐sufficient, nitrogen‐limited fermentative conditions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A51%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20and%20transcriptomic%20response%20of%20the%20wine%20yeast%20Saccharomyces%20cerevisiae%20strain%20EC1118%20after%20an%20oxygen%20impulse%20under%20carbon%E2%80%90sufficient,%20nitrogen%E2%80%90limited%20fermentative%20conditions&rft.jtitle=FEMS%20yeast%20research&rft.au=Orellana,%20Marcelo&rft.date=2014-05&rft.volume=14&rft.issue=3&rft.spage=412&rft.epage=424&rft.pages=412-424&rft.issn=1567-1356&rft.eissn=1567-1364&rft_id=info:doi/10.1111/1567-1364.12135&rft_dat=%3Cproquest_cross%3E1521335637%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4635-7a015c5fe0ea4f51078241c0a87e7d1cc963cba7f6d057c1ce443fcdf4d827153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2334715302&rft_id=info:pmid/24387769&rft_oup_id=10.1111/1567-1364.12135&rfr_iscdi=true |