Loading…

Metabolic and transcriptomic response of the wine yeast Saccharomyces cerevisiae strain EC1118 after an oxygen impulse under carbon‐sufficient, nitrogen‐limited fermentative conditions

During alcoholic fermentation, Saccharomyces cerevisiae is exposed to continuously changing environmental conditions, such as decreasing sugar and increasing ethanol concentrations. Oxygen, a critical nutrient to avoid stuck and sluggish fermentations, is only discretely available throughout the pro...

Full description

Saved in:
Bibliographic Details
Published in:FEMS yeast research 2014-05, Vol.14 (3), p.412-424
Main Authors: Orellana, Marcelo, Aceituno, Felipe F, Slater, Alex W, Almonacid, Leonardo I, Melo, Francisco, Agosin, Eduardo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4635-7a015c5fe0ea4f51078241c0a87e7d1cc963cba7f6d057c1ce443fcdf4d827153
cites cdi_FETCH-LOGICAL-c4635-7a015c5fe0ea4f51078241c0a87e7d1cc963cba7f6d057c1ce443fcdf4d827153
container_end_page 424
container_issue 3
container_start_page 412
container_title FEMS yeast research
container_volume 14
creator Orellana, Marcelo
Aceituno, Felipe F
Slater, Alex W
Almonacid, Leonardo I
Melo, Francisco
Agosin, Eduardo
description During alcoholic fermentation, Saccharomyces cerevisiae is exposed to continuously changing environmental conditions, such as decreasing sugar and increasing ethanol concentrations. Oxygen, a critical nutrient to avoid stuck and sluggish fermentations, is only discretely available throughout the process after pump‐over operation. In this work, we studied the physiological response of the wine yeast S. cerevisiae strain EC1118 to a sudden increase in dissolved oxygen, simulating pump‐over operation. With this aim, an impulse of dissolved oxygen was added to carbon‐sufficient, nitrogen‐limited anaerobic continuous cultures. Results showed that genes related to mitochondrial respiration, ergosterol biosynthesis, and oxidative stress, among other metabolic pathways, were induced after the oxygen impulse. On the other hand, mannoprotein coding genes were repressed. The changes in the expression of these genes are coordinated responses that share common elements at the level of transcriptional regulation. Beneficial and detrimental effects of these physiological processes on wine quality highlight the dual role of oxygen in ‘making or breaking wines’. These findings will facilitate the development of oxygen addition strategies to optimize yeast performance in industrial fermentations.
doi_str_mv 10.1111/1567-1364.12135
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1529955043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1111/1567-1364.12135</oup_id><sourcerecordid>1521335637</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4635-7a015c5fe0ea4f51078241c0a87e7d1cc963cba7f6d057c1ce443fcdf4d827153</originalsourceid><addsrcrecordid>eNqNksFuFSEUhidGY2t17U5J3BjjbWGAYe7S3LRqUmNi7cIV4Z45tDQzMALTend9hD6QT-OTyPW2N9GYKBvIz3d-DvlPVT1ldJ-VdcBko2aMN2Kf1YzLe9XuVrm_Pctmp3qU0gWlTFHaPqx2asFbpZr5bvX9A2azDL0DYnxHcjQ-QXRjDkORIqYx-IQkWJLPkVw5j2SFJmVyYgDOTQzDCjARwIiXLjmDJBUP58nhovTXEmMzxmJNwrfVGXrihnHqi-Hku6KDicvgf1zfpMlaBw59fk28yzEUtsi9G1zGjliMQ7kz2V0igeA7l13p63H1wJri9uR236tOjw4_L97Njj--fb94czwD0XA5U4YyCdIiRSOsZFS1tWBATatQdQxg3nBYGmWbjkoFDFAIbqGzomtrxSTfq15ufMcYvk6Ysh5cAux74zFMSTNZz-dSUsH_B2W8JMJVQV_8gV6EKfryEV1zLtYP07pQBxsKYkgpotVjdIOJK82oXs-AXqes14nrXzNQKp7d-k7LAbstfxd6AeQGuHI9rv7lp4--fLozfrWpC9P416rZb10838DWBG3Ookv69KSmrKFlDIUqxE_54tYV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2334715302</pqid></control><display><type>article</type><title>Metabolic and transcriptomic response of the wine yeast Saccharomyces cerevisiae strain EC1118 after an oxygen impulse under carbon‐sufficient, nitrogen‐limited fermentative conditions</title><source>Open Access: Oxford University Press Open Journals</source><creator>Orellana, Marcelo ; Aceituno, Felipe F ; Slater, Alex W ; Almonacid, Leonardo I ; Melo, Francisco ; Agosin, Eduardo</creator><creatorcontrib>Orellana, Marcelo ; Aceituno, Felipe F ; Slater, Alex W ; Almonacid, Leonardo I ; Melo, Francisco ; Agosin, Eduardo</creatorcontrib><description>During alcoholic fermentation, Saccharomyces cerevisiae is exposed to continuously changing environmental conditions, such as decreasing sugar and increasing ethanol concentrations. Oxygen, a critical nutrient to avoid stuck and sluggish fermentations, is only discretely available throughout the process after pump‐over operation. In this work, we studied the physiological response of the wine yeast S. cerevisiae strain EC1118 to a sudden increase in dissolved oxygen, simulating pump‐over operation. With this aim, an impulse of dissolved oxygen was added to carbon‐sufficient, nitrogen‐limited anaerobic continuous cultures. Results showed that genes related to mitochondrial respiration, ergosterol biosynthesis, and oxidative stress, among other metabolic pathways, were induced after the oxygen impulse. On the other hand, mannoprotein coding genes were repressed. The changes in the expression of these genes are coordinated responses that share common elements at the level of transcriptional regulation. Beneficial and detrimental effects of these physiological processes on wine quality highlight the dual role of oxygen in ‘making or breaking wines’. These findings will facilitate the development of oxygen addition strategies to optimize yeast performance in industrial fermentations.</description><identifier>ISSN: 1567-1356</identifier><identifier>EISSN: 1567-1364</identifier><identifier>DOI: 10.1111/1567-1364.12135</identifier><identifier>PMID: 24387769</identifier><language>eng</language><publisher>Oxford, UK: Published by Elsevier Science B.V. on behalf of the Federation of European Microbiological Societies</publisher><subject>alcoholic fermentation ; Anaerobiosis ; biochemical pathways ; biosynthesis ; Carbon - metabolism ; Dissolved oxygen ; Environmental conditions ; environmental factors ; Ergosterol ; Ethanol ; Fermentation ; gene expression ; Gene regulation ; genes ; Metabolic Networks and Pathways ; Metabolic pathways ; Metabolism ; Metabolome ; Mitochondria ; Nitrogen - metabolism ; Oxidative Stress ; oxygen ; Oxygen - metabolism ; oxygen impulse ; physiological response ; Physiology ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - drug effects ; Saccharomyces cerevisiae - genetics ; sugars ; Transcription ; transcription (genetics) ; Transcriptome ; transcriptomics ; Vitaceae ; Wine ; Wine - microbiology ; wine quality ; wine yeast ; wine yeasts ; Wines ; Yeast</subject><ispartof>FEMS yeast research, 2014-05, Vol.14 (3), p.412-424</ispartof><rights>2014 Federation of European Microbiological Societies. Published by John Wiley &amp; Sons Ltd 2014</rights><rights>2014 Federation of European Microbiological Societies. Published by John Wiley &amp; Sons Ltd. All rights reserved</rights><rights>2014 Federation of European Microbiological Societies. Published by John Wiley &amp; Sons Ltd. All rights reserved.</rights><rights>2014 Federation of European Microbiological Societies. Published by John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4635-7a015c5fe0ea4f51078241c0a87e7d1cc963cba7f6d057c1ce443fcdf4d827153</citedby><cites>FETCH-LOGICAL-c4635-7a015c5fe0ea4f51078241c0a87e7d1cc963cba7f6d057c1ce443fcdf4d827153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24387769$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Orellana, Marcelo</creatorcontrib><creatorcontrib>Aceituno, Felipe F</creatorcontrib><creatorcontrib>Slater, Alex W</creatorcontrib><creatorcontrib>Almonacid, Leonardo I</creatorcontrib><creatorcontrib>Melo, Francisco</creatorcontrib><creatorcontrib>Agosin, Eduardo</creatorcontrib><title>Metabolic and transcriptomic response of the wine yeast Saccharomyces cerevisiae strain EC1118 after an oxygen impulse under carbon‐sufficient, nitrogen‐limited fermentative conditions</title><title>FEMS yeast research</title><addtitle>FEMS Yeast Res</addtitle><description>During alcoholic fermentation, Saccharomyces cerevisiae is exposed to continuously changing environmental conditions, such as decreasing sugar and increasing ethanol concentrations. Oxygen, a critical nutrient to avoid stuck and sluggish fermentations, is only discretely available throughout the process after pump‐over operation. In this work, we studied the physiological response of the wine yeast S. cerevisiae strain EC1118 to a sudden increase in dissolved oxygen, simulating pump‐over operation. With this aim, an impulse of dissolved oxygen was added to carbon‐sufficient, nitrogen‐limited anaerobic continuous cultures. Results showed that genes related to mitochondrial respiration, ergosterol biosynthesis, and oxidative stress, among other metabolic pathways, were induced after the oxygen impulse. On the other hand, mannoprotein coding genes were repressed. The changes in the expression of these genes are coordinated responses that share common elements at the level of transcriptional regulation. Beneficial and detrimental effects of these physiological processes on wine quality highlight the dual role of oxygen in ‘making or breaking wines’. These findings will facilitate the development of oxygen addition strategies to optimize yeast performance in industrial fermentations.</description><subject>alcoholic fermentation</subject><subject>Anaerobiosis</subject><subject>biochemical pathways</subject><subject>biosynthesis</subject><subject>Carbon - metabolism</subject><subject>Dissolved oxygen</subject><subject>Environmental conditions</subject><subject>environmental factors</subject><subject>Ergosterol</subject><subject>Ethanol</subject><subject>Fermentation</subject><subject>gene expression</subject><subject>Gene regulation</subject><subject>genes</subject><subject>Metabolic Networks and Pathways</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Metabolome</subject><subject>Mitochondria</subject><subject>Nitrogen - metabolism</subject><subject>Oxidative Stress</subject><subject>oxygen</subject><subject>Oxygen - metabolism</subject><subject>oxygen impulse</subject><subject>physiological response</subject><subject>Physiology</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - drug effects</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>sugars</subject><subject>Transcription</subject><subject>transcription (genetics)</subject><subject>Transcriptome</subject><subject>transcriptomics</subject><subject>Vitaceae</subject><subject>Wine</subject><subject>Wine - microbiology</subject><subject>wine quality</subject><subject>wine yeast</subject><subject>wine yeasts</subject><subject>Wines</subject><subject>Yeast</subject><issn>1567-1356</issn><issn>1567-1364</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNksFuFSEUhidGY2t17U5J3BjjbWGAYe7S3LRqUmNi7cIV4Z45tDQzMALTend9hD6QT-OTyPW2N9GYKBvIz3d-DvlPVT1ldJ-VdcBko2aMN2Kf1YzLe9XuVrm_Pctmp3qU0gWlTFHaPqx2asFbpZr5bvX9A2azDL0DYnxHcjQ-QXRjDkORIqYx-IQkWJLPkVw5j2SFJmVyYgDOTQzDCjARwIiXLjmDJBUP58nhovTXEmMzxmJNwrfVGXrihnHqi-Hku6KDicvgf1zfpMlaBw59fk28yzEUtsi9G1zGjliMQ7kz2V0igeA7l13p63H1wJri9uR236tOjw4_L97Njj--fb94czwD0XA5U4YyCdIiRSOsZFS1tWBATatQdQxg3nBYGmWbjkoFDFAIbqGzomtrxSTfq15ufMcYvk6Ysh5cAux74zFMSTNZz-dSUsH_B2W8JMJVQV_8gV6EKfryEV1zLtYP07pQBxsKYkgpotVjdIOJK82oXs-AXqes14nrXzNQKp7d-k7LAbstfxd6AeQGuHI9rv7lp4--fLozfrWpC9P416rZb10838DWBG3Ookv69KSmrKFlDIUqxE_54tYV</recordid><startdate>201405</startdate><enddate>201405</enddate><creator>Orellana, Marcelo</creator><creator>Aceituno, Felipe F</creator><creator>Slater, Alex W</creator><creator>Almonacid, Leonardo I</creator><creator>Melo, Francisco</creator><creator>Agosin, Eduardo</creator><general>Published by Elsevier Science B.V. on behalf of the Federation of European Microbiological Societies</general><general>Blackwell Publishing Ltd</general><general>Oxford University Press</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>201405</creationdate><title>Metabolic and transcriptomic response of the wine yeast Saccharomyces cerevisiae strain EC1118 after an oxygen impulse under carbon‐sufficient, nitrogen‐limited fermentative conditions</title><author>Orellana, Marcelo ; Aceituno, Felipe F ; Slater, Alex W ; Almonacid, Leonardo I ; Melo, Francisco ; Agosin, Eduardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4635-7a015c5fe0ea4f51078241c0a87e7d1cc963cba7f6d057c1ce443fcdf4d827153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>alcoholic fermentation</topic><topic>Anaerobiosis</topic><topic>biochemical pathways</topic><topic>biosynthesis</topic><topic>Carbon - metabolism</topic><topic>Dissolved oxygen</topic><topic>Environmental conditions</topic><topic>environmental factors</topic><topic>Ergosterol</topic><topic>Ethanol</topic><topic>Fermentation</topic><topic>gene expression</topic><topic>Gene regulation</topic><topic>genes</topic><topic>Metabolic Networks and Pathways</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Metabolome</topic><topic>Mitochondria</topic><topic>Nitrogen - metabolism</topic><topic>Oxidative Stress</topic><topic>oxygen</topic><topic>Oxygen - metabolism</topic><topic>oxygen impulse</topic><topic>physiological response</topic><topic>Physiology</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - drug effects</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>sugars</topic><topic>Transcription</topic><topic>transcription (genetics)</topic><topic>Transcriptome</topic><topic>transcriptomics</topic><topic>Vitaceae</topic><topic>Wine</topic><topic>Wine - microbiology</topic><topic>wine quality</topic><topic>wine yeast</topic><topic>wine yeasts</topic><topic>Wines</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orellana, Marcelo</creatorcontrib><creatorcontrib>Aceituno, Felipe F</creatorcontrib><creatorcontrib>Slater, Alex W</creatorcontrib><creatorcontrib>Almonacid, Leonardo I</creatorcontrib><creatorcontrib>Melo, Francisco</creatorcontrib><creatorcontrib>Agosin, Eduardo</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>FEMS yeast research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orellana, Marcelo</au><au>Aceituno, Felipe F</au><au>Slater, Alex W</au><au>Almonacid, Leonardo I</au><au>Melo, Francisco</au><au>Agosin, Eduardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic and transcriptomic response of the wine yeast Saccharomyces cerevisiae strain EC1118 after an oxygen impulse under carbon‐sufficient, nitrogen‐limited fermentative conditions</atitle><jtitle>FEMS yeast research</jtitle><addtitle>FEMS Yeast Res</addtitle><date>2014-05</date><risdate>2014</risdate><volume>14</volume><issue>3</issue><spage>412</spage><epage>424</epage><pages>412-424</pages><issn>1567-1356</issn><eissn>1567-1364</eissn><abstract>During alcoholic fermentation, Saccharomyces cerevisiae is exposed to continuously changing environmental conditions, such as decreasing sugar and increasing ethanol concentrations. Oxygen, a critical nutrient to avoid stuck and sluggish fermentations, is only discretely available throughout the process after pump‐over operation. In this work, we studied the physiological response of the wine yeast S. cerevisiae strain EC1118 to a sudden increase in dissolved oxygen, simulating pump‐over operation. With this aim, an impulse of dissolved oxygen was added to carbon‐sufficient, nitrogen‐limited anaerobic continuous cultures. Results showed that genes related to mitochondrial respiration, ergosterol biosynthesis, and oxidative stress, among other metabolic pathways, were induced after the oxygen impulse. On the other hand, mannoprotein coding genes were repressed. The changes in the expression of these genes are coordinated responses that share common elements at the level of transcriptional regulation. Beneficial and detrimental effects of these physiological processes on wine quality highlight the dual role of oxygen in ‘making or breaking wines’. These findings will facilitate the development of oxygen addition strategies to optimize yeast performance in industrial fermentations.</abstract><cop>Oxford, UK</cop><pub>Published by Elsevier Science B.V. on behalf of the Federation of European Microbiological Societies</pub><pmid>24387769</pmid><doi>10.1111/1567-1364.12135</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1567-1356
ispartof FEMS yeast research, 2014-05, Vol.14 (3), p.412-424
issn 1567-1356
1567-1364
language eng
recordid cdi_proquest_miscellaneous_1529955043
source Open Access: Oxford University Press Open Journals
subjects alcoholic fermentation
Anaerobiosis
biochemical pathways
biosynthesis
Carbon - metabolism
Dissolved oxygen
Environmental conditions
environmental factors
Ergosterol
Ethanol
Fermentation
gene expression
Gene regulation
genes
Metabolic Networks and Pathways
Metabolic pathways
Metabolism
Metabolome
Mitochondria
Nitrogen - metabolism
Oxidative Stress
oxygen
Oxygen - metabolism
oxygen impulse
physiological response
Physiology
Saccharomyces cerevisiae
Saccharomyces cerevisiae - drug effects
Saccharomyces cerevisiae - genetics
sugars
Transcription
transcription (genetics)
Transcriptome
transcriptomics
Vitaceae
Wine
Wine - microbiology
wine quality
wine yeast
wine yeasts
Wines
Yeast
title Metabolic and transcriptomic response of the wine yeast Saccharomyces cerevisiae strain EC1118 after an oxygen impulse under carbon‐sufficient, nitrogen‐limited fermentative conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A51%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20and%20transcriptomic%20response%20of%20the%20wine%20yeast%20Saccharomyces%20cerevisiae%20strain%20EC1118%20after%20an%20oxygen%20impulse%20under%20carbon%E2%80%90sufficient,%20nitrogen%E2%80%90limited%20fermentative%20conditions&rft.jtitle=FEMS%20yeast%20research&rft.au=Orellana,%20Marcelo&rft.date=2014-05&rft.volume=14&rft.issue=3&rft.spage=412&rft.epage=424&rft.pages=412-424&rft.issn=1567-1356&rft.eissn=1567-1364&rft_id=info:doi/10.1111/1567-1364.12135&rft_dat=%3Cproquest_cross%3E1521335637%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4635-7a015c5fe0ea4f51078241c0a87e7d1cc963cba7f6d057c1ce443fcdf4d827153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2334715302&rft_id=info:pmid/24387769&rft_oup_id=10.1111/1567-1364.12135&rfr_iscdi=true