Loading…

Size-Dependent Catalytic Activity of Supported Vanadium Oxide Species: Oxidative Dehydrogenation of Propane

Possible reaction pathways for the oxidative dehydrogenation of propane by vanadium oxide catalysts supported on silica are examined by density functional theory. Monomeric and dimeric vanadium oxide species are both considered and modeled by vanadyl-substituted silsesquioxanes. The reaction proceed...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2014-05, Vol.136 (21), p.7751-7761
Main Authors: Rozanska, Xavier, Fortrie, Remy, Sauer, Joachim
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Possible reaction pathways for the oxidative dehydrogenation of propane by vanadium oxide catalysts supported on silica are examined by density functional theory. Monomeric and dimeric vanadium oxide species are both considered and modeled by vanadyl-substituted silsesquioxanes. The reaction proceeds in two subsequent steps. In a first step, hydrogen abstraction from propane by a vanadyl (OV) group yields a propyl radical bound to a HOVIV surface site. Propene is formed by a second hydrogen abstraction, either at the same vanadia site or at a different one. VV/VIV redox cycles are preferred over VV/VIII cycles. Under the assumption of fast reoxidation, microkinetic simulations show that the first step is rate-determining and yields Arrhenius barriers that are lower for dimers (114 kJ/mol at 750 K) than for monomers (124 kJ/mol). The rate constants predicted for a mixture of monomers and dimers are 14% larger (750 K) than for monomers only, although the increase remains within experimental uncertainty limits. Direct calculations of energy barriers also yield lower values for dimeric species than for monomeric ones. Reactivity descriptors indicate that this trend will continue also for larger oligomers. The size distribution of oligomeric species is predicted to be rather statistical. This, together with the small increase in the rate constants, explains that turnover frequencies observed for submonolayer coverages of vanadia on silica do not vary with the loading within the experimental uncertainty limits.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja503130z