Loading…
Phosphoric acid and sodium fluoride: a novel etching combination on titanium
We investigate whether a novel and inexpensive etching method, H3PO4 + NaF, on titanium could obtain both a lower hydrogen content and superior calcium phosphate deposition performance, while achieving similar surface roughness in comparison with the traditional etching method. Pure titanium samples...
Saved in:
Published in: | Biomedical materials (Bristol) 2014-06, Vol.9 (3), p.035004-035004 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We investigate whether a novel and inexpensive etching method, H3PO4 + NaF, on titanium could obtain both a lower hydrogen content and superior calcium phosphate deposition performance, while achieving similar surface roughness in comparison with the traditional etching method. Pure titanium samples were treated with different concentrations of H3PO4 + NaF at ambient temperature without auxiliary implementations (groups A, B and C), and were treated using the traditional method (group T). The samples were then maintained in simulated body fluid for 10 and 20 days. The surface morphology and chemistry, as well as the hydrogen content and distribution, were studied. The hydrogen content of the new groups are in the range of 31 (3.6)-86.9 (7.2) ppm, and that of group T is 287 (13.5) ppm. The amount of deposited calcium phosphates increases as the hydrogen content approaches 90 ppm; however, this trend does not apply as the hydrogen content exceeds 90 ppm. The surface roughnesses of groups A, B and C are in the range of 0.47 (0.01)-0.92 (0.05) µm. The new surface topography regularly transforms, and the surfaces with round pits exert a better effect on the deposition of calcium phosphates than the surfaces with sharp cusps. |
---|---|
ISSN: | 1748-6041 1748-605X |
DOI: | 10.1088/1748-6041/9/3/035004 |