Loading…
A multiplexer liquidchip technology for detecting single nucleotide polymorphisms from metabolism of anti-thrombotic drugs in dried blood spots on filter paper
A single nucleotide polymorphism (SNP) is the most fre quent type of variation in the genome. There are around 10 million SNPs that have been identified in the human genome [1]. Because SNPs are highly conserved throughout evolu tion and within a population, the map of SNPs serves as an excellent ge...
Saved in:
Published in: | Acta biochimica et biophysica Sinica 2014-06, Vol.46 (6), p.522-525 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A single nucleotide polymorphism (SNP) is the most fre quent type of variation in the genome. There are around 10 million SNPs that have been identified in the human genome [1]. Because SNPs are highly conserved throughout evolu tion and within a population, the map of SNPs serves as an excellent genotypic marker for research. The elucidation of SNP information will contribute to an individual's suscepti bility to disease and responsiveness to drug toxicity and medical intervention [2,3]. Nowadays, a variety of techni ques have been used to perform SNP genotyping, but these techniques required whole blood as the sample. Dried blood spot (DBS) specimens require less material and are substan tially more stable (several months at room temperature) than whole blood [4]. Thus, the simplicity of sample preparation, long time storage and convenient transport make DBS to be a costeffective and suitable alternative tool for collecting blood sample. |
---|---|
ISSN: | 1672-9145 1745-7270 |
DOI: | 10.1093/abbs/gmu028 |